Summary: | We consider sequential point estimation of a function of the scale parameter of an exponential distribution subject to the loss function given as a sum of the squared error and a linear cost. For a fully sequential sampling scheme, we present a sufficient condition to get a second order approximation to the risk of the sequential procedure as the cost per observation tends to zero. In estimating the mean, our result coincides with that of Woodroofe (1977). Further, in estimating the hazard rate for example, it is shown that
our sequential procedure attains the minimum risk associated with the best fixed sample size procedure up to the order term.
|