Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model
Introduction. Sepsis is the primary cause of death from infection. We wanted to improve the outcome of sepsis by stimulating innate immunity in combination with modulating the severity of inflammatory responses in rats. Method. Sepsis was induced by the injection of feces suspension (control). A 5-d...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Immunology Research |
Online Access: | http://dx.doi.org/10.1155/2018/6085095 |
id |
doaj-4caeb2a8a0ab4f999bc118c2d35063e1 |
---|---|
record_format |
Article |
spelling |
doaj-4caeb2a8a0ab4f999bc118c2d35063e12020-11-25T00:33:51ZengHindawi LimitedJournal of Immunology Research2314-88612314-71562018-01-01201810.1155/2018/60850956085095Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat ModelHaoshu Fang0Chuanfeng Hua1Stefanie Weiss2Anding Liu3Wenhui Cheng4Ralf Claus5Jürgen Rödel6Olaf Dirsch7Uta Dahmen8Department of Pathophysiology, Anhui Medical University, Hefei, ChinaExperimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, GermanyExperimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, GermanyExperimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, GermanyLaboratory Animal Research Center, College of Basic Medical Sciences, Anhui Medical University, Hefei, ChinaIntegrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, GermanyInstitute of Medical Microbiology, Jena University Hospital, Jena, GermanyInstitute for Pathology, Hospital of Chemnitz, Chemnitz, GermanyExperimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, GermanyIntroduction. Sepsis is the primary cause of death from infection. We wanted to improve the outcome of sepsis by stimulating innate immunity in combination with modulating the severity of inflammatory responses in rats. Method. Sepsis was induced by the injection of feces suspension (control). A 5-day course of G-CSF treatment was given before the septic insult (G-CSF). The inflammatory response was decreased using various doses of the LPS-blocking peptide LBPK95A (5 mg/kg=100% Combi group, 0.5 mg/kg=10% Combi group, and 0.05 mg/kg=1% Combi group). Survival rates were observed. Bacterial clearance, neutrophil infiltration, tissue damage, and the induction of hepatic and systemic inflammatory responses were determined 2 h and 12 h after the septic insult. Results. High-dose LBPK95A (100% Combi) reduced the survival rate to 10%, whereas low-dose LBPK95A (10% and 1% Combi) increased the survival rates to 50% and 80%, respectively. The survival rates inversely correlated with multiorgan damage as indicated by the serum levels of ALT and urea. G-CSF treatment increased the white blood cell counts, hepatic neutrophil infiltration, and bacterial clearance in the liver, lung, and blood. The blockade of the LPS-LBP interaction decreased neutrophil infiltration, led to increased white blood cell count, and decreased hepatic neutrophil infiltration, irrespective of dose. However, bacterial clearance improved in the 1% and 10% Combi groups but worsened in the 100% Combi group. G-CSF increased TNF-α and IL-6 levels. Irrespective of dose, the blockade of the LPS-LBP interaction was associated with low systemic cytokine levels and delayed increases in hepatic TNF-α and IL-6 mRNA expression. The delayed increase in cytokines was associated with the phosphorylation of STAT3 and AKT. Conclusion. Our results revealed that increasing innate immunity by G-CSF pretreatment and decreasing inflammatory responses using LBPK95A improved the survival rates in a rat sepsis model and could be a novel strategy to treat sepsis.http://dx.doi.org/10.1155/2018/6085095 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Haoshu Fang Chuanfeng Hua Stefanie Weiss Anding Liu Wenhui Cheng Ralf Claus Jürgen Rödel Olaf Dirsch Uta Dahmen |
spellingShingle |
Haoshu Fang Chuanfeng Hua Stefanie Weiss Anding Liu Wenhui Cheng Ralf Claus Jürgen Rödel Olaf Dirsch Uta Dahmen Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model Journal of Immunology Research |
author_facet |
Haoshu Fang Chuanfeng Hua Stefanie Weiss Anding Liu Wenhui Cheng Ralf Claus Jürgen Rödel Olaf Dirsch Uta Dahmen |
author_sort |
Haoshu Fang |
title |
Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model |
title_short |
Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model |
title_full |
Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model |
title_fullStr |
Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model |
title_full_unstemmed |
Modulation of Innate Immunity by G-CSF and Inflammatory Response by LBPK95A Improves the Outcome of Sepsis in a Rat Model |
title_sort |
modulation of innate immunity by g-csf and inflammatory response by lbpk95a improves the outcome of sepsis in a rat model |
publisher |
Hindawi Limited |
series |
Journal of Immunology Research |
issn |
2314-8861 2314-7156 |
publishDate |
2018-01-01 |
description |
Introduction. Sepsis is the primary cause of death from infection. We wanted to improve the outcome of sepsis by stimulating innate immunity in combination with modulating the severity of inflammatory responses in rats. Method. Sepsis was induced by the injection of feces suspension (control). A 5-day course of G-CSF treatment was given before the septic insult (G-CSF). The inflammatory response was decreased using various doses of the LPS-blocking peptide LBPK95A (5 mg/kg=100% Combi group, 0.5 mg/kg=10% Combi group, and 0.05 mg/kg=1% Combi group). Survival rates were observed. Bacterial clearance, neutrophil infiltration, tissue damage, and the induction of hepatic and systemic inflammatory responses were determined 2 h and 12 h after the septic insult. Results. High-dose LBPK95A (100% Combi) reduced the survival rate to 10%, whereas low-dose LBPK95A (10% and 1% Combi) increased the survival rates to 50% and 80%, respectively. The survival rates inversely correlated with multiorgan damage as indicated by the serum levels of ALT and urea. G-CSF treatment increased the white blood cell counts, hepatic neutrophil infiltration, and bacterial clearance in the liver, lung, and blood. The blockade of the LPS-LBP interaction decreased neutrophil infiltration, led to increased white blood cell count, and decreased hepatic neutrophil infiltration, irrespective of dose. However, bacterial clearance improved in the 1% and 10% Combi groups but worsened in the 100% Combi group. G-CSF increased TNF-α and IL-6 levels. Irrespective of dose, the blockade of the LPS-LBP interaction was associated with low systemic cytokine levels and delayed increases in hepatic TNF-α and IL-6 mRNA expression. The delayed increase in cytokines was associated with the phosphorylation of STAT3 and AKT. Conclusion. Our results revealed that increasing innate immunity by G-CSF pretreatment and decreasing inflammatory responses using LBPK95A improved the survival rates in a rat sepsis model and could be a novel strategy to treat sepsis. |
url |
http://dx.doi.org/10.1155/2018/6085095 |
work_keys_str_mv |
AT haoshufang modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT chuanfenghua modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT stefanieweiss modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT andingliu modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT wenhuicheng modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT ralfclaus modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT jurgenrodel modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT olafdirsch modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel AT utadahmen modulationofinnateimmunitybygcsfandinflammatoryresponsebylbpk95aimprovestheoutcomeofsepsisinaratmodel |
_version_ |
1725314533631721472 |