Preparation of Simvastatin Hydrogel through Arginine Addition for Drug Delivery System

Simvastatin is a lipid lowering agent which has been used recently as drug delivery system for stimulating bone regeneration. Because of low therapeutic efficacy and bioavailability, it is necessary to deliver simvastatin by local administration e.g. by hydrogel system. However, simvastatin has very...

Full description

Bibliographic Details
Main Authors: Rosyida Niswati Fathmah, Ariyanto Teguh, Pudyani Pinandi Sri, Ana Ika Dewi
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201815601002
Description
Summary:Simvastatin is a lipid lowering agent which has been used recently as drug delivery system for stimulating bone regeneration. Because of low therapeutic efficacy and bioavailability, it is necessary to deliver simvastatin by local administration e.g. by hydrogel system. However, simvastatin has very poor solubility which restricts to prepare hydrogel formulation. The aim of this study is to improve solubility of simvastatin with arginine as co-solvent for developing a controlled released drug delivery system by loading simvastatin into gelatin hydrogel. The solubility study was performed by addition of an excess mass of simvastatin into the specified molar solutions of the arginine. All conical flasks were placed in a mechanical water bath shaker at the temperature of 25, 40, and 50 °C and shaken for a maximum period of 72 hours. The drug concentration was analyzed by UV/Visible spectroscopy at 238 nm. The hydrogel was prepared by a dehydrothermal method. The results showed that simvastatin solubility increases with increasing arginine concentrations and temperature. Characterizations showed a successful preparation of simvastatin-loaded gelatin hydrogel. The arginine simvastatin hydrogel and the gelatin hydrogel (as a blank) exhibited a comparable swelling index (ca. 6.5). Furthermore, microparticles of the material show a narrow particle size distribution in the range between 150-250 μm.
ISSN:2261-236X