Nonenzymatic Glucose Sensor Based on In Situ Reduction of Ni/NiO-Graphene Nanocomposite
Ni/NiO nanoflower modified reduced graphene oxide (rGO) nanocomposite (Ni/NiO-rGO) was introduced to screen printed electrode (SPE) for the construction of a nonenzymatic electrochemical glucose biosensor. The Ni/NiO-rGO nanocomposite was synthesized by an in situ reduction process. Graphene oxide (...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-10-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/16/11/1791 |
Summary: | Ni/NiO nanoflower modified reduced graphene oxide (rGO) nanocomposite (Ni/NiO-rGO) was introduced to screen printed electrode (SPE) for the construction of a nonenzymatic electrochemical glucose biosensor. The Ni/NiO-rGO nanocomposite was synthesized by an in situ reduction process. Graphene oxide (GO) hybrid Nafion sheets first chemical adsorbed Ni ions and assembled on the SPE. Subsequently, GO and Ni ions were reduced by hydrazine hydrate. The electrochemical properties of such a Ni/NiO-rGO modified SPE were carefully investigated. It showed a high activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed nonenzymatic sensor can be utilized for quantification of glucose with a wide linear range from 29.9 μM to 6.44 mM (R = 0.9937) with a low detection limit of 1.8 μM (S/N = 3) and a high sensitivity of 1997 μA/mM∙cm−2. It also exhibited good reproducibility as well as high selectivity. |
---|---|
ISSN: | 1424-8220 |