The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to interco...

Full description

Bibliographic Details
Main Authors: D. W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L. M. Avallone, R. Bauer, Z. Bozóki, L. E. Christensen, S. M. Davis, G. Durry, C. Dyroff, R. L. Herman, S. Hunsmann, S. M. Khaykin, P. Mackrodt, J. Meyer, J. B. Smith, N. Spelten, R. F. Troy, H. Vömel, S. Wagner, F. G. Wienhold
Format: Article
Language:English
Published: Copernicus Publications 2014-09-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/7/3177/2014/amt-7-3177-2014.pdf
id doaj-4c6f745921724a669426c3fa0c3d8069
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author D. W. Fahey
R.-S. Gao
O. Möhler
H. Saathoff
C. Schiller
V. Ebert
M. Krämer
T. Peter
N. Amarouche
L. M. Avallone
R. Bauer
Z. Bozóki
L. E. Christensen
S. M. Davis
G. Durry
C. Dyroff
R. L. Herman
S. Hunsmann
S. M. Khaykin
P. Mackrodt
J. Meyer
J. B. Smith
N. Spelten
R. F. Troy
H. Vömel
S. Wagner
F. G. Wienhold
spellingShingle D. W. Fahey
R.-S. Gao
O. Möhler
H. Saathoff
C. Schiller
V. Ebert
M. Krämer
T. Peter
N. Amarouche
L. M. Avallone
R. Bauer
Z. Bozóki
L. E. Christensen
S. M. Davis
G. Durry
C. Dyroff
R. L. Herman
S. Hunsmann
S. M. Khaykin
P. Mackrodt
J. Meyer
J. B. Smith
N. Spelten
R. F. Troy
H. Vömel
S. Wagner
F. G. Wienhold
The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
Atmospheric Measurement Techniques
author_facet D. W. Fahey
R.-S. Gao
O. Möhler
H. Saathoff
C. Schiller
V. Ebert
M. Krämer
T. Peter
N. Amarouche
L. M. Avallone
R. Bauer
Z. Bozóki
L. E. Christensen
S. M. Davis
G. Durry
C. Dyroff
R. L. Herman
S. Hunsmann
S. M. Khaykin
P. Mackrodt
J. Meyer
J. B. Smith
N. Spelten
R. F. Troy
H. Vömel
S. Wagner
F. G. Wienhold
author_sort D. W. Fahey
title The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
title_short The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
title_full The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
title_fullStr The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
title_full_unstemmed The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
title_sort aquavit-1 intercomparison of atmospheric water vapor measurement techniques
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2014-09-01
description The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m<sup>3</sup>, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the substantially larger differences observed during in-flight intercomparisons stem from other factors associated with the moving platforms or the non-laboratory environment. The success of AquaVIT-1 provides a template for future intercomparison efforts with water vapor or other species that are focused on improving the analytical quality of atmospheric measurements on moving platforms.
url http://www.atmos-meas-tech.net/7/3177/2014/amt-7-3177-2014.pdf
work_keys_str_mv AT dwfahey theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rsgao theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT omohler theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT hsaathoff theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT cschiller theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT vebert theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT mkramer theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT tpeter theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT namarouche theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT lmavallone theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rbauer theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT zbozoki theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT lechristensen theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT smdavis theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT gdurry theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT cdyroff theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rlherman theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT shunsmann theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT smkhaykin theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT pmackrodt theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT jmeyer theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT jbsmith theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT nspelten theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rftroy theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT hvomel theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT swagner theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT fgwienhold theaquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT dwfahey aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rsgao aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT omohler aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT hsaathoff aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT cschiller aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT vebert aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT mkramer aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT tpeter aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT namarouche aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT lmavallone aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rbauer aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT zbozoki aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT lechristensen aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT smdavis aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT gdurry aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT cdyroff aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rlherman aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT shunsmann aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT smkhaykin aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT pmackrodt aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT jmeyer aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT jbsmith aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT nspelten aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT rftroy aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT hvomel aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT swagner aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
AT fgwienhold aquavit1intercomparisonofatmosphericwatervapormeasurementtechniques
_version_ 1725641833063645184
spelling doaj-4c6f745921724a669426c3fa0c3d80692020-11-24T23:00:36ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482014-09-01793177321310.5194/amt-7-3177-2014The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniquesD. W. Fahey0R.-S. Gao1O. Möhler2H. Saathoff3C. Schiller4V. Ebert5M. Krämer6T. Peter7N. Amarouche8L. M. Avallone9R. Bauer10Z. Bozóki11L. E. Christensen12S. M. Davis13G. Durry14C. Dyroff15R. L. Herman16S. Hunsmann17S. M. Khaykin18P. Mackrodt19J. Meyer20J. B. Smith21N. Spelten22R. F. Troy23H. Vömel24S. Wagner25F. G. Wienhold26National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder, CO, USANational Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder, CO, USAKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Aerosol Research (IMK-AAF), Karlsruhe, GermanyKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Aerosol Research (IMK-AAF), Karlsruhe, GermanyInstitute for Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, GermanyUniversity of Heidelberg, Physikalisch-Chemisches Institut (PCI), Heidelberg, GermanyInstitute for Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, GermanyInstitute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, SwitzerlandDivision Technique de l'Institut National des Sciences de l'Univers, UPS 855 CNRS, Meudon, FranceDepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USAInstitute for Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, GermanyMTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, HungaryJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USANational Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder, CO, USAGroupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims-Champagne-Ardenne, Reims, FranceKarlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research, Atmospheric Trace Gases and Remote Sensing (IMK-ASF), Karlsruhe, GermanyJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAUniversity of Heidelberg, Physikalisch-Chemisches Institut (PCI), Heidelberg, GermanyCentral Aerological Observatory, Moscow, RussiaUniversity of Heidelberg, Physikalisch-Chemisches Institut (PCI), Heidelberg, GermanyInstitute for Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, GermanySchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USAInstitute for Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, GermanyJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USANational Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder, CO, USAUniversity of Heidelberg, Physikalisch-Chemisches Institut (PCI), Heidelberg, GermanyInstitute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, SwitzerlandThe AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m<sup>3</sup>, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the substantially larger differences observed during in-flight intercomparisons stem from other factors associated with the moving platforms or the non-laboratory environment. The success of AquaVIT-1 provides a template for future intercomparison efforts with water vapor or other species that are focused on improving the analytical quality of atmospheric measurements on moving platforms.http://www.atmos-meas-tech.net/7/3177/2014/amt-7-3177-2014.pdf