Experimental investigation on the geometry of GHZ states
Abstract Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A complete basis of GHZ states can be constructed by properly choosing local basis rotations. We demonstrate this experimentally for the Hilbert space $${{\mathbb{C}}}_{2}^{\otimes 4}$$ ℂ 2 ⊗ 4 by en...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-10-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-13124-6 |
id |
doaj-4c53e9f3b6284175b7c9bf2d90eb071c |
---|---|
record_format |
Article |
spelling |
doaj-4c53e9f3b6284175b7c9bf2d90eb071c2020-12-08T00:05:12ZengNature Publishing GroupScientific Reports2045-23222017-10-01711810.1038/s41598-017-13124-6Experimental investigation on the geometry of GHZ statesGonzalo Carvacho0Francesco Graffitti1Vincenzo D’Ambrosio2Beatrix C. Hiesmayr3Fabio Sciarrino4Dipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5Dipartimento di Fisica, Sapienza Università di RomaAbstract Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A complete basis of GHZ states can be constructed by properly choosing local basis rotations. We demonstrate this experimentally for the Hilbert space $${{\mathbb{C}}}_{2}^{\otimes 4}$$ ℂ 2 ⊗ 4 by entangling two photons in polarization and orbital angular momentum. Mixing GHZ states unmasks different entanglement features based on their particular local geometrical connectedness. In particular, a specific GHZ state in a complete orthonormal basis has a “twin” GHZ state for which equally mixing leads to full separability in opposition to any other basis-state. Exploiting these local geometrical relations provides a toolbox for generating specific types of multipartite entanglement, each providing different benefits in outperforming classical devices. Our experiment investigates these GHZ’s properties exploiting the HMGH framework which allows us to study the geometry for the different depths of entanglement in our system and showing a good stability and fidelity thus admitting a scaling in degrees of freedom and advanced operational manipulations.https://doi.org/10.1038/s41598-017-13124-6 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gonzalo Carvacho Francesco Graffitti Vincenzo D’Ambrosio Beatrix C. Hiesmayr Fabio Sciarrino |
spellingShingle |
Gonzalo Carvacho Francesco Graffitti Vincenzo D’Ambrosio Beatrix C. Hiesmayr Fabio Sciarrino Experimental investigation on the geometry of GHZ states Scientific Reports |
author_facet |
Gonzalo Carvacho Francesco Graffitti Vincenzo D’Ambrosio Beatrix C. Hiesmayr Fabio Sciarrino |
author_sort |
Gonzalo Carvacho |
title |
Experimental investigation on the geometry of GHZ states |
title_short |
Experimental investigation on the geometry of GHZ states |
title_full |
Experimental investigation on the geometry of GHZ states |
title_fullStr |
Experimental investigation on the geometry of GHZ states |
title_full_unstemmed |
Experimental investigation on the geometry of GHZ states |
title_sort |
experimental investigation on the geometry of ghz states |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-10-01 |
description |
Abstract Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A complete basis of GHZ states can be constructed by properly choosing local basis rotations. We demonstrate this experimentally for the Hilbert space $${{\mathbb{C}}}_{2}^{\otimes 4}$$ ℂ 2 ⊗ 4 by entangling two photons in polarization and orbital angular momentum. Mixing GHZ states unmasks different entanglement features based on their particular local geometrical connectedness. In particular, a specific GHZ state in a complete orthonormal basis has a “twin” GHZ state for which equally mixing leads to full separability in opposition to any other basis-state. Exploiting these local geometrical relations provides a toolbox for generating specific types of multipartite entanglement, each providing different benefits in outperforming classical devices. Our experiment investigates these GHZ’s properties exploiting the HMGH framework which allows us to study the geometry for the different depths of entanglement in our system and showing a good stability and fidelity thus admitting a scaling in degrees of freedom and advanced operational manipulations. |
url |
https://doi.org/10.1038/s41598-017-13124-6 |
work_keys_str_mv |
AT gonzalocarvacho experimentalinvestigationonthegeometryofghzstates AT francescograffitti experimentalinvestigationonthegeometryofghzstates AT vincenzodambrosio experimentalinvestigationonthegeometryofghzstates AT beatrixchiesmayr experimentalinvestigationonthegeometryofghzstates AT fabiosciarrino experimentalinvestigationonthegeometryofghzstates |
_version_ |
1724396689943429120 |