Bayesian back-calculation and nowcasting for line list data during the COVID-19 pandemic.

Surveillance is critical to mounting an appropriate and effective response to pandemics. However, aggregated case report data suffers from reporting delays and can lead to misleading inferences. Different from aggregated case report data, line list data is a table contains individual features such a...

Full description

Bibliographic Details
Main Authors: Tenglong Li, Laura F White
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-07-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1009210
Description
Summary:Surveillance is critical to mounting an appropriate and effective response to pandemics. However, aggregated case report data suffers from reporting delays and can lead to misleading inferences. Different from aggregated case report data, line list data is a table contains individual features such as dates of symptom onset and reporting for each reported case and a good source for modeling delays. Current methods for modeling reporting delays are not particularly appropriate for line list data, which typically has missing symptom onset dates that are non-ignorable for modeling reporting delays. In this paper, we develop a Bayesian approach that dynamically integrates imputation and estimation for line list data. Specifically, this Bayesian approach can accurately estimate the epidemic curve and instantaneous reproduction numbers, even with most symptom onset dates missing. The Bayesian approach is also robust to deviations from model assumptions, such as changes in the reporting delay distribution or incorrect specification of the maximum reporting delay. We apply the Bayesian approach to COVID-19 line list data in Massachusetts and find the reproduction number estimates correspond more closely to the control measures than the estimates based on the reported curve.
ISSN:1553-734X
1553-7358