Tribological Behavior of Carbon-Based Nanomaterial-Reinforced Nickel Metal Matrix Composites

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with exceptional mechanical, thermal, chemical, and electrical properties are enticing reinforcements for fabricating lightweight, high-strength, and wear-resistant metal matrix composites with superior mechanical and tribological performance...

Full description

Bibliographic Details
Main Authors: Amit Patil, Ganesh Walunj, Furkan Ozdemir, Rajeev Kumar Gupta, Tushar Borkar
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/13/3536
Description
Summary:Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with exceptional mechanical, thermal, chemical, and electrical properties are enticing reinforcements for fabricating lightweight, high-strength, and wear-resistant metal matrix composites with superior mechanical and tribological performance. Nickel–carbon nanotube composite (Ni-CNT) and nickel–graphene nanoplatelet composite (Ni-GNP) were fabricated via mechanical milling followed by the spark plasma sintering (SPS) technique. The Ni-CNT/GNP composites with varying reinforcement concentrations (0.5, 2, and 5 wt%) were ball milled for twelve hours to explore the effect of reinforcement concentration and its dispersion in the nickel microstructure. The effect of varying CNT/GNP concentration on the microhardness and the tribological behavior was investigated and compared with SPS processed monolithic nickel. Ball-on-disc tribological tests were performed to determine the effect of different structural morphologies of CNTs and GNPs on the wear performance and coefficient of friction of these composites. Experimental results indicate considerable grain refinement and improvement in the microhardness of these composites after the addition of CNTs/GNPs in the nickel matrix. In addition, the CNTs and GNPs were effective in forming a lubricant layer, enhancing the wear resistance and lowering the coefficient of friction during the sliding wear test, in contrast to the pure nickel counterpart. Pure nickel demonstrated the highest CoF of ~0.9, Ni-0.5CNT and Ni-0.5GNP exhibited a CoF of ~0.8, whereas the lowest CoF of ~0.2 was observed for Ni-2CNT and Ni-5GNP composites. It was also observed that the uncertainty of wear resistance and CoF in both the CNT/GNP-reinforced composites increased when loaded with higher reinforcement concentrations. The wear surface was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis to elucidate the wear mechanism in these composites.
ISSN:1996-1944