A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy

Prostate cancer is commonly treated by a form of hormone therapy called androgen suppression. This form of treatment, while successful at reducing the cancer cell population, adversely affects quality of life and typically leads to a recurrence of the cancer in an androgen-independent form. Intermit...

Full description

Bibliographic Details
Main Authors: Travis Portz, Yang Kuang, John D. Nagy
Format: Article
Language:English
Published: AIP Publishing LLC 2012-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.3697848
Description
Summary:Prostate cancer is commonly treated by a form of hormone therapy called androgen suppression. This form of treatment, while successful at reducing the cancer cell population, adversely affects quality of life and typically leads to a recurrence of the cancer in an androgen-independent form. Intermittent androgen suppression aims to alleviate some of these adverse affects by cycling the patient on and off treatment. Clinical studies have suggested that intermittent therapy is capable of maintaining androgen dependence over multiple treatment cycles while increasing quality of life during off-treatment periods. This paper presents a mathematical model of prostate cancer to study the dynamics of androgen suppression therapy and the production of prostate-specific antigen (PSA), a clinical marker for prostate cancer. Preliminary models were based on the assumption of an androgen-independent (AI) cell population with constant net growth rate. These models gave poor accuracy when fitting clinical data during simulation. The final model presented hypothesizes an AI population with increased sensitivity to low levels of androgen. It also hypothesizes that PSA production is heavily dependent on androgen. The high level of accuracy in fitting clinical data with this model appears to confirm these hypotheses, which are also consistent with biological evidence.
ISSN:2158-3226