Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
Sentiment analysis is a field that is currently in great demand by various groups. Sentiment analysis can be done using documents and opinions from social media. One social media that is usually used as a means of opinion is Facebook social media. Before a text is classified, it is necessary to do P...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Udayana
2019-05-01
|
Series: | Majalah Ilmiah Teknologi Elektro |
Online Access: | https://ojs.unud.ac.id/index.php/JTE/article/view/47671 |
id |
doaj-4bfacfe225fb4d1d8a746cbff3fa6e14 |
---|---|
record_format |
Article |
spelling |
doaj-4bfacfe225fb4d1d8a746cbff3fa6e142020-11-25T03:29:10ZengUniversitas UdayanaMajalah Ilmiah Teknologi Elektro1693-29512503-23722019-05-0118114514810.24843/MITE.2019.v18i01.P2247671Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa IndonesiaPutu Sri Merta SuryaniLinawati LinawatiKomang Oka SaputraSentiment analysis is a field that is currently in great demand by various groups. Sentiment analysis can be done using documents and opinions from social media. One social media that is usually used as a means of opinion is Facebook social media. Before a text is classified, it is necessary to do POS Tagging which is the word labeling stage where the purpose is to determine the words which include opinions and non opinions. For labeling words can use the Hidden Markov Model or Rule Based. The method commonly used in sentiment analysis is the Naïve Bayes Classifier method. This method simply classifies probabilities. Naïve Bayes Classifier can be used to classify opinions into positive and negative opinions. In addition, this method uses training data in the classification process. The classification produced from the Naïve Bayes Classifier method is quite good. To test the accuracy of the system in classifying opinions, the classification results are tested. From the test results obtained an average accuracy of 87.1%. The more training data that is similar to testing data, the better the classification results.https://ojs.unud.ac.id/index.php/JTE/article/view/47671 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Putu Sri Merta Suryani Linawati Linawati Komang Oka Saputra |
spellingShingle |
Putu Sri Merta Suryani Linawati Linawati Komang Oka Saputra Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia Majalah Ilmiah Teknologi Elektro |
author_facet |
Putu Sri Merta Suryani Linawati Linawati Komang Oka Saputra |
author_sort |
Putu Sri Merta Suryani |
title |
Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia |
title_short |
Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia |
title_full |
Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia |
title_fullStr |
Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia |
title_full_unstemmed |
Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia |
title_sort |
penggunaan metode naïve bayes classifier pada analisis sentimen facebook berbahasa indonesia |
publisher |
Universitas Udayana |
series |
Majalah Ilmiah Teknologi Elektro |
issn |
1693-2951 2503-2372 |
publishDate |
2019-05-01 |
description |
Sentiment analysis is a field that is currently in great demand by various groups. Sentiment analysis can be done using documents and opinions from social media. One social media that is usually used as a means of opinion is Facebook social media. Before a text is classified, it is necessary to do POS Tagging which is the word labeling stage where the purpose is to determine the words which include opinions and non opinions. For labeling words can use the Hidden Markov Model or Rule Based. The method commonly used in sentiment analysis is the Naïve Bayes Classifier method. This method simply classifies probabilities. Naïve Bayes Classifier can be used to classify opinions into positive and negative opinions. In addition, this method uses training data in the classification process. The classification produced from the Naïve Bayes Classifier method is quite good. To test the accuracy of the system in classifying opinions, the classification results are tested. From the test results obtained an average accuracy of 87.1%. The more training data that is similar to testing data, the better the classification results. |
url |
https://ojs.unud.ac.id/index.php/JTE/article/view/47671 |
work_keys_str_mv |
AT putusrimertasuryani penggunaanmetodenaivebayesclassifierpadaanalisissentimenfacebookberbahasaindonesia AT linawatilinawati penggunaanmetodenaivebayesclassifierpadaanalisissentimenfacebookberbahasaindonesia AT komangokasaputra penggunaanmetodenaivebayesclassifierpadaanalisissentimenfacebookberbahasaindonesia |
_version_ |
1724580104201306112 |