Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia

Sentiment analysis is a field that is currently in great demand by various groups. Sentiment analysis can be done using documents and opinions from social media. One social media that is usually used as a means of opinion is Facebook social media. Before a text is classified, it is necessary to do P...

Full description

Bibliographic Details
Main Authors: Putu Sri Merta Suryani, Linawati Linawati, Komang Oka Saputra
Format: Article
Language:English
Published: Universitas Udayana 2019-05-01
Series:Majalah Ilmiah Teknologi Elektro
Online Access:https://ojs.unud.ac.id/index.php/JTE/article/view/47671
id doaj-4bfacfe225fb4d1d8a746cbff3fa6e14
record_format Article
spelling doaj-4bfacfe225fb4d1d8a746cbff3fa6e142020-11-25T03:29:10ZengUniversitas UdayanaMajalah Ilmiah Teknologi Elektro1693-29512503-23722019-05-0118114514810.24843/MITE.2019.v18i01.P2247671Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa IndonesiaPutu Sri Merta SuryaniLinawati LinawatiKomang Oka SaputraSentiment analysis is a field that is currently in great demand by various groups. Sentiment analysis can be done using documents and opinions from social media. One social media that is usually used as a means of opinion is Facebook social media. Before a text is classified, it is necessary to do POS Tagging which is the word labeling stage where the purpose is to determine the words which include opinions and non opinions. For labeling words can use the Hidden Markov Model or Rule Based. The method commonly used in sentiment analysis is the Naïve Bayes Classifier method. This method simply classifies probabilities. Naïve Bayes Classifier can be used to classify opinions into positive and negative opinions. In addition, this method uses training data in the classification process. The classification produced from the Naïve Bayes Classifier method is quite good. To test the accuracy of the system in classifying opinions, the classification results are tested. From the test results obtained an average accuracy of 87.1%. The more training data that is similar to testing data, the better the classification results.https://ojs.unud.ac.id/index.php/JTE/article/view/47671
collection DOAJ
language English
format Article
sources DOAJ
author Putu Sri Merta Suryani
Linawati Linawati
Komang Oka Saputra
spellingShingle Putu Sri Merta Suryani
Linawati Linawati
Komang Oka Saputra
Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
Majalah Ilmiah Teknologi Elektro
author_facet Putu Sri Merta Suryani
Linawati Linawati
Komang Oka Saputra
author_sort Putu Sri Merta Suryani
title Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
title_short Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
title_full Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
title_fullStr Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
title_full_unstemmed Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia
title_sort penggunaan metode naïve bayes classifier pada analisis sentimen facebook berbahasa indonesia
publisher Universitas Udayana
series Majalah Ilmiah Teknologi Elektro
issn 1693-2951
2503-2372
publishDate 2019-05-01
description Sentiment analysis is a field that is currently in great demand by various groups. Sentiment analysis can be done using documents and opinions from social media. One social media that is usually used as a means of opinion is Facebook social media. Before a text is classified, it is necessary to do POS Tagging which is the word labeling stage where the purpose is to determine the words which include opinions and non opinions. For labeling words can use the Hidden Markov Model or Rule Based. The method commonly used in sentiment analysis is the Naïve Bayes Classifier method. This method simply classifies probabilities. Naïve Bayes Classifier can be used to classify opinions into positive and negative opinions. In addition, this method uses training data in the classification process. The classification produced from the Naïve Bayes Classifier method is quite good. To test the accuracy of the system in classifying opinions, the classification results are tested. From the test results obtained an average accuracy of 87.1%. The more training data that is similar to testing data, the better the classification results.
url https://ojs.unud.ac.id/index.php/JTE/article/view/47671
work_keys_str_mv AT putusrimertasuryani penggunaanmetodenaivebayesclassifierpadaanalisissentimenfacebookberbahasaindonesia
AT linawatilinawati penggunaanmetodenaivebayesclassifierpadaanalisissentimenfacebookberbahasaindonesia
AT komangokasaputra penggunaanmetodenaivebayesclassifierpadaanalisissentimenfacebookberbahasaindonesia
_version_ 1724580104201306112