The Rapidity Distributions and the Thermalization Induced Transverse Momentum Distributions in Au-Au Collisions at RHIC Energies

It is widely believed that the quark-gluon plasma (QGP) might be formed in the current heavy ion collisions. It is also widely recognized that the relativistic hydrodynamics is one of the best tools for describing the process of expansion and hadronization of QGP. In this paper, by taking into accou...

Full description

Bibliographic Details
Main Authors: Zhi-Jin Jiang, Jia-Qi Hui, Yu Zhang
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2017/6896524
Description
Summary:It is widely believed that the quark-gluon plasma (QGP) might be formed in the current heavy ion collisions. It is also widely recognized that the relativistic hydrodynamics is one of the best tools for describing the process of expansion and hadronization of QGP. In this paper, by taking into account the effects of thermalization, a hydrodynamic model including phase transition from QGP state to hadronic state is used to analyze the rapidity and transverse momentum distributions of identified charged particles produced in heavy ion collisions. A comparison is made between the theoretical results and experimental data. The theoretical model gives a good description of the corresponding measurements made in Au-Au collisions at RHIC energies.
ISSN:1687-7357
1687-7365