Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I

Microbial biofilms associated with marine particulate organic matter carry out transformations that influence local and regional biogeochemical cycles. Early microbial colonizers are often hypothesized to “set the stage” for biofilm structure, dynamics, and function via N-acyl homoserine lactone (AH...

Full description

Bibliographic Details
Main Authors: April C. Armes, Alison Buchan
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-07-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmars.2021.681551/full
id doaj-4bd47857266a47f29063279a6c44fe79
record_format Article
spelling doaj-4bd47857266a47f29063279a6c44fe792021-07-05T08:24:11ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452021-07-01810.3389/fmars.2021.681551681551Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4IApril C. ArmesAlison BuchanMicrobial biofilms associated with marine particulate organic matter carry out transformations that influence local and regional biogeochemical cycles. Early microbial colonizers are often hypothesized to “set the stage” for biofilm structure, dynamics, and function via N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS). Production of AHLs, as well as antimicrobials, contributes to the colonization success of members of the Roseobacter clade. One member of this group of abundant marine bacteria, Rhodobacterales sp. Y4I, possesses two QS systems, phaRI (QS1) and pgaRI (QS2). Here, we characterize mutants in both QS systems to provide genetic evidence that the two systems work in hierarchical fashion to coordinate production of the antimicrobial indigoidine as well as biofilm formation. A mutation in pgaR (QS2) results in decreased expression of genes encoding both QS systems as well as those governing the biosynthesis of indigoidine. In contrast, mutations in QS1 did not significantly influence gene expression of QS2. Addition of exogenous AHLs to QS1 and QS2 mutants led to partial restoration of indigoidine production (45–60% of WT) for QS1 but not QS2. Mutational disruptions of QS1 had a more pronounced effect on biofilm development than those in QS2. Finally, we demonstrate that c-di-GMP levels are altered in QS and indigoidine biosynthesis Y4I mutants. Together, these results indicate that pgaRI (QS2) is at the top of a regulatory hierarchy governing indigoidine biosynthesis and that the global regulatory metabolite, c-di-GMP, is likely integrated into the QS circuitry of this strain. These findings provide mechanistic understanding of physiological processes that are important in elucidating factors driving competitiveness of Roseobacters in nature.https://www.frontiersin.org/articles/10.3389/fmars.2021.681551/fullquorum sensingAHLsRoseobacter clade bacteriabiofilmcyclic-di-GMP
collection DOAJ
language English
format Article
sources DOAJ
author April C. Armes
Alison Buchan
spellingShingle April C. Armes
Alison Buchan
Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I
Frontiers in Marine Science
quorum sensing
AHLs
Roseobacter clade bacteria
biofilm
cyclic-di-GMP
author_facet April C. Armes
Alison Buchan
author_sort April C. Armes
title Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I
title_short Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I
title_full Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I
title_fullStr Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I
title_full_unstemmed Cyclic di-GMP Is Integrated Into a Hierarchal Quorum Sensing Network Regulating Antimicrobial Production and Biofilm Formation in Roseobacter Clade Member Rhodobacterales Strain Y4I
title_sort cyclic di-gmp is integrated into a hierarchal quorum sensing network regulating antimicrobial production and biofilm formation in roseobacter clade member rhodobacterales strain y4i
publisher Frontiers Media S.A.
series Frontiers in Marine Science
issn 2296-7745
publishDate 2021-07-01
description Microbial biofilms associated with marine particulate organic matter carry out transformations that influence local and regional biogeochemical cycles. Early microbial colonizers are often hypothesized to “set the stage” for biofilm structure, dynamics, and function via N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS). Production of AHLs, as well as antimicrobials, contributes to the colonization success of members of the Roseobacter clade. One member of this group of abundant marine bacteria, Rhodobacterales sp. Y4I, possesses two QS systems, phaRI (QS1) and pgaRI (QS2). Here, we characterize mutants in both QS systems to provide genetic evidence that the two systems work in hierarchical fashion to coordinate production of the antimicrobial indigoidine as well as biofilm formation. A mutation in pgaR (QS2) results in decreased expression of genes encoding both QS systems as well as those governing the biosynthesis of indigoidine. In contrast, mutations in QS1 did not significantly influence gene expression of QS2. Addition of exogenous AHLs to QS1 and QS2 mutants led to partial restoration of indigoidine production (45–60% of WT) for QS1 but not QS2. Mutational disruptions of QS1 had a more pronounced effect on biofilm development than those in QS2. Finally, we demonstrate that c-di-GMP levels are altered in QS and indigoidine biosynthesis Y4I mutants. Together, these results indicate that pgaRI (QS2) is at the top of a regulatory hierarchy governing indigoidine biosynthesis and that the global regulatory metabolite, c-di-GMP, is likely integrated into the QS circuitry of this strain. These findings provide mechanistic understanding of physiological processes that are important in elucidating factors driving competitiveness of Roseobacters in nature.
topic quorum sensing
AHLs
Roseobacter clade bacteria
biofilm
cyclic-di-GMP
url https://www.frontiersin.org/articles/10.3389/fmars.2021.681551/full
work_keys_str_mv AT aprilcarmes cyclicdigmpisintegratedintoahierarchalquorumsensingnetworkregulatingantimicrobialproductionandbiofilmformationinroseobactercladememberrhodobacteralesstrainy4i
AT alisonbuchan cyclicdigmpisintegratedintoahierarchalquorumsensingnetworkregulatingantimicrobialproductionandbiofilmformationinroseobactercladememberrhodobacteralesstrainy4i
_version_ 1721318733932134400