Genome-wide analysis of the role of GlnR in <it>Streptomyces venezuelae </it>provides new insights into global nitrogen regulation in actinomycetes

<p>Abstract</p> <p>Background</p> <p>GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global <it>in vivo </it>approach to identify the GlnR r...

Full description

Bibliographic Details
Main Authors: Bibb Mervyn J, Chandra Govind, Pullan Steven T, Merrick Mike
Format: Article
Language:English
Published: BMC 2011-04-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/12/175
Description
Summary:<p>Abstract</p> <p>Background</p> <p>GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global <it>in vivo </it>approach to identify the GlnR regulon of <it>Streptomyces venezuelae</it>, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between <it>glnR</it><sup>+ </sup>and <it>glnR </it>mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the <it>S. venezuelae </it>genome.</p> <p>Results</p> <p>GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for <it>S. venezuelae</it>. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions.</p> <p>Conclusions</p> <p>The GlnR regulon of <it>S. venezuelae </it>is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms.</p>
ISSN:1471-2164