Load-Frequency Control of Multi-Area Power System Based on the Improved Weighted Fruit Fly Optimization Algorithm

With the development and application of large-scale renewable energy sources, the electric power grid is becoming huge and complicated; one of the most concerning problems is how to ensure coordination between a large number of varied controllers. Differential games theory is used to solve the probl...

Full description

Bibliographic Details
Main Authors: Nian Wang, Jing Zhang, Yu He, Min Liu, Ying Zhang, Chaokuan Chen, Yerui Gu, Yongheng Ren
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/2/437
Description
Summary:With the development and application of large-scale renewable energy sources, the electric power grid is becoming huge and complicated; one of the most concerning problems is how to ensure coordination between a large number of varied controllers. Differential games theory is used to solve the problem of collaborative control. However, it is difficult to solve the differential game problem with constraints by using conventional algorithm. Furthermore, simulation models established by existing research are almost linear, which is not conducive to practical engineering application. To solve the above problem, we propose a co-evolutionary algorithm based on the improved weighted fruit fly optimization algorithm (IWFOA) to solve a multi-area frequency collaborative control model with non-linear constraints. Simulation results show that the control strategy can achieve system control targets, and fully utilize the various characteristics of each generator to balance the interests of different areas. Compared with a co-evolutionary genetic algorithm and a collaborative multi-objective particle swarm optimization algorithm, the co-evolutionary algorithm based on the IWFOA has a better suppression effect on the frequency deviation and tie-line power deviation caused by the disturbance and has a shorter adjustment time.
ISSN:1996-1073