miR-98 targets ITGB3 to inhibit proliferation, migration, and invasion of non-small-cell lung cancer

Ran Ni,1 Yongjie Huang,2 Jing Wang11Department of Respiration Medicine, 2Department of Geriatric Respiration and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of ChinaBackground: Accumulating evidence has emphasized causative links betwee...

Full description

Bibliographic Details
Main Authors: Ni R, Huang Y, Wang J
Format: Article
Language:English
Published: Dove Medical Press 2015-09-01
Series:OncoTargets and Therapy
Online Access:https://www.dovepress.com/mir-98-targets-itgb3-to-inhibit-proliferation-migration-and-invasion-o-peer-reviewed-article-OTT
Description
Summary:Ran Ni,1 Yongjie Huang,2 Jing Wang11Department of Respiration Medicine, 2Department of Geriatric Respiration and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of ChinaBackground: Accumulating evidence has emphasized causative links between aberrant microRNA (miR) expression patterns and cancer development. Abnormally expressed miRNA-98 (miR-98) was found in certain types of human cancers. The biological roles of miR-98 in lung cancer, however, remain largely undefined.Methods: We evaluated the expression of miR-98 in normal lung tissues, lung cancer tissues, normal human bronchial epithelial cells, and lung cancer cells using quantitative real-time polymerase chain reaction. Effect of miR-98 on proliferation of lung cancer cells was investigated using MTT assay and colony formation assay. Transwell assay was used to assess the effects of miR-98 on migration and invasion of lung cancer cells. Whether miR-98 targets the 3'-untranslated region (3'-UTR) of integrin β3 (ITGB3) coding gene ITGB3 mRNA was ascertained using luciferase reporter assay. Finally, we transplanted miR-98 expressing A549 cells into nude mice to observe the effect of miR-98 on tumor growth in vivo.Results: We confirmed that miR-98 was frequently low expressed in lung cancer tissues and human lung cancer cells. Reintroduction of miR-98 into lung cancer cells inhibited cell proliferation, migration, and invasion in vitro and suppressed tumor formation in a nude mouse model. Furthermore, we identified that miR-98 exerted inhibitory roles by directly binding to 3'-UTR of ITGB3 mRNA, thus negatively regulated the expression of ITGB3. Interestingly, upon restoring the expression of ITGB3, the effect of miR-98 on cell proliferation was partially reversed.Conclusion: Our findings suggest that miR-98 prevents proliferation, migration, and invasion of lung cancer cells by directly binding to the 3'-UTR of ITGB3 mRNA and could be a promising treatment option in anticancer therapy.Keywords: miR-98, proliferation, migration, invasion, integrin β3 (ITGB3)
ISSN:1178-6930