Minimal geometric deformation in a Reissner–Nordström background

Abstract This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the $$\t...

Full description

Bibliographic Details
Main Authors: Ángel Rincón, Luciano Gabbanelli, Ernesto Contreras, Francisco Tello-Ortiz
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-019-7397-9
id doaj-4bc102727f414ea1b1a4437ac5001dee
record_format Article
spelling doaj-4bc102727f414ea1b1a4437ac5001dee2020-11-25T03:05:39ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522019-10-01791011110.1140/epjc/s10052-019-7397-9Minimal geometric deformation in a Reissner–Nordström backgroundÁngel Rincón0Luciano Gabbanelli1Ernesto Contreras2Francisco Tello-Ortiz3Instituto de Física, Pontificia Universidad Católica de ValparaísoDeptartament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de BarcelonaSchool of Physical Sciences and Nanotechnology, Yachay Tech UniversityDepartamento de Física, Facultad de ciencias básicas, Universidad de AntofagastaAbstract This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the $$\theta $$ θ -sector in order to obtain the new material contributions and the decoupler function f(r). Besides, we obtain the bounds on the free parameters of the extended solution to avoid new singularities. Furthermore, we show the finitude of all thermodynamic parameters of the solution such as the effective density $${\tilde{\rho }}$$ ρ~ , radial $${\tilde{p}}_{r}$$ p~r and tangential $${\tilde{p}}_{t}$$ p~t pressure for different values of parameter $$\alpha $$ α and the total electric charge Q. Finally, the behavior of some scalar invariants, namely the Ricci R and Kretshmann $$R_{\mu \nu \omega \epsilon }R^{\mu \nu \omega \epsilon }$$ RμνωϵRμνωϵ scalars are analyzed. It is also remarkable that, after an appropriate limit, the deformed Schwarzschild black hole solution always can be recovered.http://link.springer.com/article/10.1140/epjc/s10052-019-7397-9
collection DOAJ
language English
format Article
sources DOAJ
author Ángel Rincón
Luciano Gabbanelli
Ernesto Contreras
Francisco Tello-Ortiz
spellingShingle Ángel Rincón
Luciano Gabbanelli
Ernesto Contreras
Francisco Tello-Ortiz
Minimal geometric deformation in a Reissner–Nordström background
European Physical Journal C: Particles and Fields
author_facet Ángel Rincón
Luciano Gabbanelli
Ernesto Contreras
Francisco Tello-Ortiz
author_sort Ángel Rincón
title Minimal geometric deformation in a Reissner–Nordström background
title_short Minimal geometric deformation in a Reissner–Nordström background
title_full Minimal geometric deformation in a Reissner–Nordström background
title_fullStr Minimal geometric deformation in a Reissner–Nordström background
title_full_unstemmed Minimal geometric deformation in a Reissner–Nordström background
title_sort minimal geometric deformation in a reissner–nordström background
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2019-10-01
description Abstract This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the $$\theta $$ θ -sector in order to obtain the new material contributions and the decoupler function f(r). Besides, we obtain the bounds on the free parameters of the extended solution to avoid new singularities. Furthermore, we show the finitude of all thermodynamic parameters of the solution such as the effective density $${\tilde{\rho }}$$ ρ~ , radial $${\tilde{p}}_{r}$$ p~r and tangential $${\tilde{p}}_{t}$$ p~t pressure for different values of parameter $$\alpha $$ α and the total electric charge Q. Finally, the behavior of some scalar invariants, namely the Ricci R and Kretshmann $$R_{\mu \nu \omega \epsilon }R^{\mu \nu \omega \epsilon }$$ RμνωϵRμνωϵ scalars are analyzed. It is also remarkable that, after an appropriate limit, the deformed Schwarzschild black hole solution always can be recovered.
url http://link.springer.com/article/10.1140/epjc/s10052-019-7397-9
work_keys_str_mv AT angelrincon minimalgeometricdeformationinareissnernordstrombackground
AT lucianogabbanelli minimalgeometricdeformationinareissnernordstrombackground
AT ernestocontreras minimalgeometricdeformationinareissnernordstrombackground
AT franciscotelloortiz minimalgeometricdeformationinareissnernordstrombackground
_version_ 1724677305898369024