Minimal geometric deformation in a Reissner–Nordström background
Abstract This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the $$\t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-10-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-019-7397-9 |
id |
doaj-4bc102727f414ea1b1a4437ac5001dee |
---|---|
record_format |
Article |
spelling |
doaj-4bc102727f414ea1b1a4437ac5001dee2020-11-25T03:05:39ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522019-10-01791011110.1140/epjc/s10052-019-7397-9Minimal geometric deformation in a Reissner–Nordström backgroundÁngel Rincón0Luciano Gabbanelli1Ernesto Contreras2Francisco Tello-Ortiz3Instituto de Física, Pontificia Universidad Católica de ValparaísoDeptartament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de BarcelonaSchool of Physical Sciences and Nanotechnology, Yachay Tech UniversityDepartamento de Física, Facultad de ciencias básicas, Universidad de AntofagastaAbstract This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the $$\theta $$ θ -sector in order to obtain the new material contributions and the decoupler function f(r). Besides, we obtain the bounds on the free parameters of the extended solution to avoid new singularities. Furthermore, we show the finitude of all thermodynamic parameters of the solution such as the effective density $${\tilde{\rho }}$$ ρ~ , radial $${\tilde{p}}_{r}$$ p~r and tangential $${\tilde{p}}_{t}$$ p~t pressure for different values of parameter $$\alpha $$ α and the total electric charge Q. Finally, the behavior of some scalar invariants, namely the Ricci R and Kretshmann $$R_{\mu \nu \omega \epsilon }R^{\mu \nu \omega \epsilon }$$ RμνωϵRμνωϵ scalars are analyzed. It is also remarkable that, after an appropriate limit, the deformed Schwarzschild black hole solution always can be recovered.http://link.springer.com/article/10.1140/epjc/s10052-019-7397-9 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ángel Rincón Luciano Gabbanelli Ernesto Contreras Francisco Tello-Ortiz |
spellingShingle |
Ángel Rincón Luciano Gabbanelli Ernesto Contreras Francisco Tello-Ortiz Minimal geometric deformation in a Reissner–Nordström background European Physical Journal C: Particles and Fields |
author_facet |
Ángel Rincón Luciano Gabbanelli Ernesto Contreras Francisco Tello-Ortiz |
author_sort |
Ángel Rincón |
title |
Minimal geometric deformation in a Reissner–Nordström background |
title_short |
Minimal geometric deformation in a Reissner–Nordström background |
title_full |
Minimal geometric deformation in a Reissner–Nordström background |
title_fullStr |
Minimal geometric deformation in a Reissner–Nordström background |
title_full_unstemmed |
Minimal geometric deformation in a Reissner–Nordström background |
title_sort |
minimal geometric deformation in a reissner–nordström background |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2019-10-01 |
description |
Abstract This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the $$\theta $$ θ -sector in order to obtain the new material contributions and the decoupler function f(r). Besides, we obtain the bounds on the free parameters of the extended solution to avoid new singularities. Furthermore, we show the finitude of all thermodynamic parameters of the solution such as the effective density $${\tilde{\rho }}$$ ρ~ , radial $${\tilde{p}}_{r}$$ p~r and tangential $${\tilde{p}}_{t}$$ p~t pressure for different values of parameter $$\alpha $$ α and the total electric charge Q. Finally, the behavior of some scalar invariants, namely the Ricci R and Kretshmann $$R_{\mu \nu \omega \epsilon }R^{\mu \nu \omega \epsilon }$$ RμνωϵRμνωϵ scalars are analyzed. It is also remarkable that, after an appropriate limit, the deformed Schwarzschild black hole solution always can be recovered. |
url |
http://link.springer.com/article/10.1140/epjc/s10052-019-7397-9 |
work_keys_str_mv |
AT angelrincon minimalgeometricdeformationinareissnernordstrombackground AT lucianogabbanelli minimalgeometricdeformationinareissnernordstrombackground AT ernestocontreras minimalgeometricdeformationinareissnernordstrombackground AT franciscotelloortiz minimalgeometricdeformationinareissnernordstrombackground |
_version_ |
1724677305898369024 |