Spiking neurons from tunable Gaussian heterojunction transistors

Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.

Bibliographic Details
Main Authors: Megan E. Beck, Ahish Shylendra, Vinod K. Sangwan, Silu Guo, William A. Gaviria Rojas, Hocheon Yoo, Hadallia Bergeron, Katherine Su, Amit R. Trivedi, Mark C. Hersam
Format: Article
Language:English
Published: Nature Publishing Group 2020-03-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-15378-7
id doaj-4bbd6d5c2b1f4d8f83394ac1c32b1319
record_format Article
spelling doaj-4bbd6d5c2b1f4d8f83394ac1c32b13192021-05-11T08:52:56ZengNature Publishing GroupNature Communications2041-17232020-03-011111810.1038/s41467-020-15378-7Spiking neurons from tunable Gaussian heterojunction transistorsMegan E. Beck0Ahish Shylendra1Vinod K. Sangwan2Silu Guo3William A. Gaviria Rojas4Hocheon Yoo5Hadallia Bergeron6Katherine Su7Amit R. Trivedi8Mark C. Hersam9Department of Materials Science and Engineering, Northwestern UniversityDepartment of Electrical and Computer Engineering, University of IllinoisDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Electrical and Computer Engineering, University of IllinoisDepartment of Materials Science and Engineering, Northwestern UniversityDesigning high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.https://doi.org/10.1038/s41467-020-15378-7
collection DOAJ
language English
format Article
sources DOAJ
author Megan E. Beck
Ahish Shylendra
Vinod K. Sangwan
Silu Guo
William A. Gaviria Rojas
Hocheon Yoo
Hadallia Bergeron
Katherine Su
Amit R. Trivedi
Mark C. Hersam
spellingShingle Megan E. Beck
Ahish Shylendra
Vinod K. Sangwan
Silu Guo
William A. Gaviria Rojas
Hocheon Yoo
Hadallia Bergeron
Katherine Su
Amit R. Trivedi
Mark C. Hersam
Spiking neurons from tunable Gaussian heterojunction transistors
Nature Communications
author_facet Megan E. Beck
Ahish Shylendra
Vinod K. Sangwan
Silu Guo
William A. Gaviria Rojas
Hocheon Yoo
Hadallia Bergeron
Katherine Su
Amit R. Trivedi
Mark C. Hersam
author_sort Megan E. Beck
title Spiking neurons from tunable Gaussian heterojunction transistors
title_short Spiking neurons from tunable Gaussian heterojunction transistors
title_full Spiking neurons from tunable Gaussian heterojunction transistors
title_fullStr Spiking neurons from tunable Gaussian heterojunction transistors
title_full_unstemmed Spiking neurons from tunable Gaussian heterojunction transistors
title_sort spiking neurons from tunable gaussian heterojunction transistors
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2020-03-01
description Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.
url https://doi.org/10.1038/s41467-020-15378-7
work_keys_str_mv AT meganebeck spikingneuronsfromtunablegaussianheterojunctiontransistors
AT ahishshylendra spikingneuronsfromtunablegaussianheterojunctiontransistors
AT vinodksangwan spikingneuronsfromtunablegaussianheterojunctiontransistors
AT siluguo spikingneuronsfromtunablegaussianheterojunctiontransistors
AT williamagaviriarojas spikingneuronsfromtunablegaussianheterojunctiontransistors
AT hocheonyoo spikingneuronsfromtunablegaussianheterojunctiontransistors
AT hadalliabergeron spikingneuronsfromtunablegaussianheterojunctiontransistors
AT katherinesu spikingneuronsfromtunablegaussianheterojunctiontransistors
AT amitrtrivedi spikingneuronsfromtunablegaussianheterojunctiontransistors
AT markchersam spikingneuronsfromtunablegaussianheterojunctiontransistors
_version_ 1721450421738799104