Spiking neurons from tunable Gaussian heterojunction transistors
Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-15378-7 |
id |
doaj-4bbd6d5c2b1f4d8f83394ac1c32b1319 |
---|---|
record_format |
Article |
spelling |
doaj-4bbd6d5c2b1f4d8f83394ac1c32b13192021-05-11T08:52:56ZengNature Publishing GroupNature Communications2041-17232020-03-011111810.1038/s41467-020-15378-7Spiking neurons from tunable Gaussian heterojunction transistorsMegan E. Beck0Ahish Shylendra1Vinod K. Sangwan2Silu Guo3William A. Gaviria Rojas4Hocheon Yoo5Hadallia Bergeron6Katherine Su7Amit R. Trivedi8Mark C. Hersam9Department of Materials Science and Engineering, Northwestern UniversityDepartment of Electrical and Computer Engineering, University of IllinoisDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Materials Science and Engineering, Northwestern UniversityDepartment of Electrical and Computer Engineering, University of IllinoisDepartment of Materials Science and Engineering, Northwestern UniversityDesigning high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.https://doi.org/10.1038/s41467-020-15378-7 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Megan E. Beck Ahish Shylendra Vinod K. Sangwan Silu Guo William A. Gaviria Rojas Hocheon Yoo Hadallia Bergeron Katherine Su Amit R. Trivedi Mark C. Hersam |
spellingShingle |
Megan E. Beck Ahish Shylendra Vinod K. Sangwan Silu Guo William A. Gaviria Rojas Hocheon Yoo Hadallia Bergeron Katherine Su Amit R. Trivedi Mark C. Hersam Spiking neurons from tunable Gaussian heterojunction transistors Nature Communications |
author_facet |
Megan E. Beck Ahish Shylendra Vinod K. Sangwan Silu Guo William A. Gaviria Rojas Hocheon Yoo Hadallia Bergeron Katherine Su Amit R. Trivedi Mark C. Hersam |
author_sort |
Megan E. Beck |
title |
Spiking neurons from tunable Gaussian heterojunction transistors |
title_short |
Spiking neurons from tunable Gaussian heterojunction transistors |
title_full |
Spiking neurons from tunable Gaussian heterojunction transistors |
title_fullStr |
Spiking neurons from tunable Gaussian heterojunction transistors |
title_full_unstemmed |
Spiking neurons from tunable Gaussian heterojunction transistors |
title_sort |
spiking neurons from tunable gaussian heterojunction transistors |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2020-03-01 |
description |
Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits. |
url |
https://doi.org/10.1038/s41467-020-15378-7 |
work_keys_str_mv |
AT meganebeck spikingneuronsfromtunablegaussianheterojunctiontransistors AT ahishshylendra spikingneuronsfromtunablegaussianheterojunctiontransistors AT vinodksangwan spikingneuronsfromtunablegaussianheterojunctiontransistors AT siluguo spikingneuronsfromtunablegaussianheterojunctiontransistors AT williamagaviriarojas spikingneuronsfromtunablegaussianheterojunctiontransistors AT hocheonyoo spikingneuronsfromtunablegaussianheterojunctiontransistors AT hadalliabergeron spikingneuronsfromtunablegaussianheterojunctiontransistors AT katherinesu spikingneuronsfromtunablegaussianheterojunctiontransistors AT amitrtrivedi spikingneuronsfromtunablegaussianheterojunctiontransistors AT markchersam spikingneuronsfromtunablegaussianheterojunctiontransistors |
_version_ |
1721450421738799104 |