Validation of a Novel Fiber-Optic Sensor System for Monitoring Cardiorespiratory Activities During MRI Examinations
In this article we report on the validation of a novel fiber-optic sensor system suitable for simultaneous cardiac and respiration activity monitoring during Magnetic Resonance Imaging (MRI) examinations. This MRI-compatible Heart Rate (HR) and Respiration Rate (RR) measurement system is based on th...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
VSB-Technical University of Ostrava
2017-01-01
|
Series: | Advances in Electrical and Electronic Engineering |
Subjects: | |
Online Access: | http://advances.utc.sk/index.php/AEEE/article/view/2194 |
Summary: | In this article we report on the validation of a novel fiber-optic sensor system suitable for simultaneous cardiac and respiration activity monitoring during Magnetic Resonance Imaging (MRI) examinations. This MRI-compatible Heart Rate (HR) and Respiration Rate (RR) measurement system is based on the Fiber-optic Bragg Grating (FBG) sensors. Using our system, we performed real measurements on 4 test subjects (2~males and 2 females) after obtaining their written informed consents. The sensor was encapsulated inside a Polydimethylsiloxane polymer (PDMS), as this material does not react with the human skin and is unresponsive to Electromagnetic Interference (EMI). The advantage of our design is that the sensor could be embedded inside a pad which is placed underneath a patient's body while lying in the supine position. The main feature of our system design is to maximize patient`s safety and comfort while assisting the clinical staff in predicting and detecting impending patient's hyperventilation and panic attacks. To further validate the efficacy of our system, we used the Bland-Altman statistical analysis test on data acquired from all test subjects to determine the accuracy of cardiac and respiratory rate measurements. Our satisfactory results provide promising means to leverage the advancement of research in the field of noninvasive vital sign monitoring in MRI environments. In addition, our method and system enable the clinical staff to predict and detect patient's hyperventilation and panic attacks while undergoing an MRI examination. |
---|---|
ISSN: | 1336-1376 1804-3119 |