Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming
In this study, the period that corresponds to the threshold of a 1.5 °C rise (relative to 1861–1880) in surface temperature is validated using a multi-model ensemble mean from 17 global climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). On this basis, the changes in permafr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2017-12-01
|
Series: | Advances in Climate Change Research |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1674927817300680 |
id |
doaj-4bb5c233e3734b5394d0c1fb71a2bd5a |
---|---|
record_format |
Article |
spelling |
doaj-4bb5c233e3734b5394d0c1fb71a2bd5a2021-02-02T02:40:16ZengKeAi Communications Co., Ltd.Advances in Climate Change Research1674-92782017-12-018423524410.1016/j.accre.2017.07.002Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warmingYing KongCheng-Hai WangIn this study, the period that corresponds to the threshold of a 1.5 °C rise (relative to 1861–1880) in surface temperature is validated using a multi-model ensemble mean from 17 global climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). On this basis, the changes in permafrost and snow cover in the Northern Hemisphere are investigated under a scenario in which the global surface temperature has risen by 1.5 °C, and the uncertainties of the results are further discussed. The results show that the threshold of 1.5 °C warming will be reached in 2027, 2026, and 2023 under RCP2.6, RCP4.5, RCP8.5, respectively. When the global average surface temperature rises by 1.5 °C, the southern boundary of the permafrost will move 1–3.5° northward (relative to 1986–2005), particularly in the southern Central Siberian Plateau. The permafrost area will be reduced by 3.43 × 106 km2 (21.12%), 3.91 × 106 km2 (24.1%) and 4.15 × 106 km2 (25.55%) relative to 1986–2005 in RCP2.6, RCP4.5 and RCP8.5, respectively. The snow water equivalent will decrease in over half of the regions in the Northern Hemisphere but increase only slightly in the Central Siberian Plateau. The snow water equivalent will decrease significantly (more than 40% relative to 1986–2005) in central North America, western Europe, and northwestern Russia. The permafrost area in the Qinghai–Tibet Plateau will decrease by 0.15 × 106 km2 (7.28%), 0.18 × 106 km2 (8.74%), and 0.17 × 106 km2 (8.25%), respectively, in RCP2.6, RCP4.5, RCP8.5. The snow water equivalent in winter (DJF) and spring (MAM) over the Qinghai–Tibet Plateau will decrease by 14.9% and 13.8%, respectively.http://www.sciencedirect.com/science/article/pii/S1674927817300680PermafrostSnow water equivalentNorthern Hemisphere1.5 °C global warming |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ying Kong Cheng-Hai Wang |
spellingShingle |
Ying Kong Cheng-Hai Wang Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming Advances in Climate Change Research Permafrost Snow water equivalent Northern Hemisphere 1.5 °C global warming |
author_facet |
Ying Kong Cheng-Hai Wang |
author_sort |
Ying Kong |
title |
Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming |
title_short |
Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming |
title_full |
Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming |
title_fullStr |
Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming |
title_full_unstemmed |
Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming |
title_sort |
responses and changes in the permafrost and snow water equivalent in the northern hemisphere under a scenario of 1.5 °c warming |
publisher |
KeAi Communications Co., Ltd. |
series |
Advances in Climate Change Research |
issn |
1674-9278 |
publishDate |
2017-12-01 |
description |
In this study, the period that corresponds to the threshold of a 1.5 °C rise (relative to 1861–1880) in surface temperature is validated using a multi-model ensemble mean from 17 global climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). On this basis, the changes in permafrost and snow cover in the Northern Hemisphere are investigated under a scenario in which the global surface temperature has risen by 1.5 °C, and the uncertainties of the results are further discussed. The results show that the threshold of 1.5 °C warming will be reached in 2027, 2026, and 2023 under RCP2.6, RCP4.5, RCP8.5, respectively. When the global average surface temperature rises by 1.5 °C, the southern boundary of the permafrost will move 1–3.5° northward (relative to 1986–2005), particularly in the southern Central Siberian Plateau. The permafrost area will be reduced by 3.43 × 106 km2 (21.12%), 3.91 × 106 km2 (24.1%) and 4.15 × 106 km2 (25.55%) relative to 1986–2005 in RCP2.6, RCP4.5 and RCP8.5, respectively. The snow water equivalent will decrease in over half of the regions in the Northern Hemisphere but increase only slightly in the Central Siberian Plateau. The snow water equivalent will decrease significantly (more than 40% relative to 1986–2005) in central North America, western Europe, and northwestern Russia. The permafrost area in the Qinghai–Tibet Plateau will decrease by 0.15 × 106 km2 (7.28%), 0.18 × 106 km2 (8.74%), and 0.17 × 106 km2 (8.25%), respectively, in RCP2.6, RCP4.5, RCP8.5. The snow water equivalent in winter (DJF) and spring (MAM) over the Qinghai–Tibet Plateau will decrease by 14.9% and 13.8%, respectively. |
topic |
Permafrost Snow water equivalent Northern Hemisphere 1.5 °C global warming |
url |
http://www.sciencedirect.com/science/article/pii/S1674927817300680 |
work_keys_str_mv |
AT yingkong responsesandchangesinthepermafrostandsnowwaterequivalentinthenorthernhemisphereunderascenarioof15cwarming AT chenghaiwang responsesandchangesinthepermafrostandsnowwaterequivalentinthenorthernhemisphereunderascenarioof15cwarming |
_version_ |
1724309396597506048 |