Global Asymptotic Stability of a Family of Nonlinear Difference Equations

In this note, we consider global asymptotic stability of the following nonlinear difference equation xn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, where ki∈ℕ  (i=1,2,…,v),  v≥2, β1∈[-1,1], β2,β3,…,βv∈(-∞,+∞), x-m,x-m+1,…,x-1∈(0,∞), and m=max1≤i≤v{ki}. Our resu...

Full description

Bibliographic Details
Main Author: Maoxin Liao
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/750852
id doaj-4baccc8925554e55b7cc75d73119a97b
record_format Article
spelling doaj-4baccc8925554e55b7cc75d73119a97b2020-11-25T00:29:54ZengHindawi LimitedDiscrete Dynamics in Nature and Society1026-02261607-887X2013-01-01201310.1155/2013/750852750852Global Asymptotic Stability of a Family of Nonlinear Difference EquationsMaoxin Liao0School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, ChinaIn this note, we consider global asymptotic stability of the following nonlinear difference equation xn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, where ki∈ℕ  (i=1,2,…,v),  v≥2, β1∈[-1,1], β2,β3,…,βv∈(-∞,+∞), x-m,x-m+1,…,x-1∈(0,∞), and m=max1≤i≤v{ki}. Our result generalizes the corresponding results in the recent literature and simultaneously conforms to a conjecture in the work by Berenhaut et al. (2007).http://dx.doi.org/10.1155/2013/750852
collection DOAJ
language English
format Article
sources DOAJ
author Maoxin Liao
spellingShingle Maoxin Liao
Global Asymptotic Stability of a Family of Nonlinear Difference Equations
Discrete Dynamics in Nature and Society
author_facet Maoxin Liao
author_sort Maoxin Liao
title Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_short Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_full Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_fullStr Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_full_unstemmed Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_sort global asymptotic stability of a family of nonlinear difference equations
publisher Hindawi Limited
series Discrete Dynamics in Nature and Society
issn 1026-0226
1607-887X
publishDate 2013-01-01
description In this note, we consider global asymptotic stability of the following nonlinear difference equation xn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, where ki∈ℕ  (i=1,2,…,v),  v≥2, β1∈[-1,1], β2,β3,…,βv∈(-∞,+∞), x-m,x-m+1,…,x-1∈(0,∞), and m=max1≤i≤v{ki}. Our result generalizes the corresponding results in the recent literature and simultaneously conforms to a conjecture in the work by Berenhaut et al. (2007).
url http://dx.doi.org/10.1155/2013/750852
work_keys_str_mv AT maoxinliao globalasymptoticstabilityofafamilyofnonlineardifferenceequations
_version_ 1725329181620830208