Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance
Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-09-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | http://www.mdpi.com/2077-1312/3/3/1027 |
id |
doaj-4bab102872fd407e99e88e38069fd521 |
---|---|
record_format |
Article |
spelling |
doaj-4bab102872fd407e99e88e38069fd5212021-04-02T05:08:55ZengMDPI AGJournal of Marine Science and Engineering2077-13122015-09-01331027104010.3390/jmse3031027jmse3031027Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and MaintenanceMihai Florian0John Dalsgaard Sørensen1Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, DenmarkDepartment of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, DenmarkOut of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimize maintenance planning for the blades lifetime.http://www.mdpi.com/2077-1312/3/3/1027maintenancebladesdegradationfracture mechanicsoffshore |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mihai Florian John Dalsgaard Sørensen |
spellingShingle |
Mihai Florian John Dalsgaard Sørensen Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance Journal of Marine Science and Engineering maintenance blades degradation fracture mechanics offshore |
author_facet |
Mihai Florian John Dalsgaard Sørensen |
author_sort |
Mihai Florian |
title |
Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance |
title_short |
Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance |
title_full |
Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance |
title_fullStr |
Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance |
title_full_unstemmed |
Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance |
title_sort |
wind turbine blade life-time assessment model for preventive planning of operation and maintenance |
publisher |
MDPI AG |
series |
Journal of Marine Science and Engineering |
issn |
2077-1312 |
publishDate |
2015-09-01 |
description |
Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimize maintenance planning for the blades lifetime. |
topic |
maintenance blades degradation fracture mechanics offshore |
url |
http://www.mdpi.com/2077-1312/3/3/1027 |
work_keys_str_mv |
AT mihaiflorian windturbinebladelifetimeassessmentmodelforpreventiveplanningofoperationandmaintenance AT johndalsgaardsørensen windturbinebladelifetimeassessmentmodelforpreventiveplanningofoperationandmaintenance |
_version_ |
1724172714744217600 |