Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas.
In response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the g...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-08-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2930844?pdf=render |
id |
doaj-4b88f496ea2045578180bd073c17c09a |
---|---|
record_format |
Article |
spelling |
doaj-4b88f496ea2045578180bd073c17c09a2020-11-25T01:55:54ZengPublic Library of Science (PLoS)PLoS ONE1932-62032010-08-0158e1226610.1371/journal.pone.0012266Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas.Smriti MehraBapi PaharNoton K DuttaCecily N ConerlyKathrine Philippi-FalkensteinXavier AlvarezDeepak KaushalIn response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the granuloma. Profiling granuloma transcriptome will identify key immune signaling pathways active during TB infection. Such studies are not possible in human granulomas, due to various confounding factors. Nonhuman Primates (NHPs) infected with Mtb accurately reflect human TB in clinical and pathological contexts.We studied transcriptomics of granuloma lesions in the lungs of NHPs exhibiting active TB, during early and late stages of infection. Early TB lesions were characterized by a highly pro-inflammatory environment, expressing high levels of immune signaling pathways involving IFNgamma, TNFalpha, JAK, STAT and C-C/C-X-C chemokines. Late TB lesions, while morphologically similar to the early ones, exhibited an overwhelming silencing of the inflammatory response. Reprogramming of the granuloma transcriptome was highly significant. The expression of approximately two-thirds of all genes induced in early lesions was later repressed.The transcriptional characteristics of TB granulomas undergo drastic changes during the course of infection. The overwhelming reprogramming of the initial pro-inflammatory surge in late lesions may be a host strategy to limit immunopathology. We propose that these host profiles can predict changes in bacterial replication and physiology, perhaps serving as markers for latency and reactivation.http://europepmc.org/articles/PMC2930844?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Smriti Mehra Bapi Pahar Noton K Dutta Cecily N Conerly Kathrine Philippi-Falkenstein Xavier Alvarez Deepak Kaushal |
spellingShingle |
Smriti Mehra Bapi Pahar Noton K Dutta Cecily N Conerly Kathrine Philippi-Falkenstein Xavier Alvarez Deepak Kaushal Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS ONE |
author_facet |
Smriti Mehra Bapi Pahar Noton K Dutta Cecily N Conerly Kathrine Philippi-Falkenstein Xavier Alvarez Deepak Kaushal |
author_sort |
Smriti Mehra |
title |
Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. |
title_short |
Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. |
title_full |
Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. |
title_fullStr |
Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. |
title_full_unstemmed |
Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. |
title_sort |
transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2010-08-01 |
description |
In response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the granuloma. Profiling granuloma transcriptome will identify key immune signaling pathways active during TB infection. Such studies are not possible in human granulomas, due to various confounding factors. Nonhuman Primates (NHPs) infected with Mtb accurately reflect human TB in clinical and pathological contexts.We studied transcriptomics of granuloma lesions in the lungs of NHPs exhibiting active TB, during early and late stages of infection. Early TB lesions were characterized by a highly pro-inflammatory environment, expressing high levels of immune signaling pathways involving IFNgamma, TNFalpha, JAK, STAT and C-C/C-X-C chemokines. Late TB lesions, while morphologically similar to the early ones, exhibited an overwhelming silencing of the inflammatory response. Reprogramming of the granuloma transcriptome was highly significant. The expression of approximately two-thirds of all genes induced in early lesions was later repressed.The transcriptional characteristics of TB granulomas undergo drastic changes during the course of infection. The overwhelming reprogramming of the initial pro-inflammatory surge in late lesions may be a host strategy to limit immunopathology. We propose that these host profiles can predict changes in bacterial replication and physiology, perhaps serving as markers for latency and reactivation. |
url |
http://europepmc.org/articles/PMC2930844?pdf=render |
work_keys_str_mv |
AT smritimehra transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas AT bapipahar transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas AT notonkdutta transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas AT cecilynconerly transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas AT kathrinephilippifalkenstein transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas AT xavieralvarez transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas AT deepakkaushal transcriptionalreprogramminginnonhumanprimaterhesusmacaquetuberculosisgranulomas |
_version_ |
1724982644591034368 |