3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic ac...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-06-01
|
Series: | Materials Today Bio |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590006421000211 |
id |
doaj-4b59499c3d49460db4524c2c98a6e6c6 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Bouyer C. Garot P. Machillot J. Vollaire V. Fitzpatrick S. Morand J. Boutonnat V. Josserand G. Bettega C. Picart |
spellingShingle |
M. Bouyer C. Garot P. Machillot J. Vollaire V. Fitzpatrick S. Morand J. Boutonnat V. Josserand G. Bettega C. Picart 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect Materials Today Bio Scaffold Bone morphogenetic protein 2 (BMP-2) Tissue engineering 3D printing Bone regeneration Critical-size bone defect |
author_facet |
M. Bouyer C. Garot P. Machillot J. Vollaire V. Fitzpatrick S. Morand J. Boutonnat V. Josserand G. Bettega C. Picart |
author_sort |
M. Bouyer |
title |
3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect |
title_short |
3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect |
title_full |
3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect |
title_fullStr |
3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect |
title_full_unstemmed |
3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect |
title_sort |
3d-printed scaffold combined to 2d osteoinductive coatings to repair a critical-size mandibular bone defect |
publisher |
Elsevier |
series |
Materials Today Bio |
issn |
2590-0064 |
publishDate |
2021-06-01 |
description |
The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic acid (PLA), coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (computed tomography scans, microcomputed tomography scans, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20- to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. Three-dimensional printed PLA scaffolds loaded with reduced doses of BMP-2 may be a safe and simple solution for large bone defects faced in the clinic. |
topic |
Scaffold Bone morphogenetic protein 2 (BMP-2) Tissue engineering 3D printing Bone regeneration Critical-size bone defect |
url |
http://www.sciencedirect.com/science/article/pii/S2590006421000211 |
work_keys_str_mv |
AT mbouyer 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT cgarot 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT pmachillot 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT jvollaire 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT vfitzpatrick 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT smorand 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT jboutonnat 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT vjosserand 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT gbettega 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect AT cpicart 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect |
_version_ |
1717814462060167168 |
spelling |
doaj-4b59499c3d49460db4524c2c98a6e6c62021-09-05T04:41:39ZengElsevierMaterials Today Bio2590-00642021-06-01111001133D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defectM. Bouyer0C. Garot1P. Machillot2J. Vollaire3V. Fitzpatrick4S. Morand5J. Boutonnat6V. Josserand7G. Bettega8C. Picart9CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; Clinique Générale d’Annecy, 4 Chemin de la Tour la Reine, 74000, Annecy, FranceCEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, FranceCEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, FranceUniversité Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, FranceCNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, FranceCEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France; Service de Chirurgie Maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, 74370, Epagny Metz-Tessy, FranceUnité Médico-technique d’Histologie Cytologie Expérimentale, Faculté de Médecine, Université Joseph Fourier, 38700, La Tronche, France; Département d’Anatomie et Cytologie Pathologique, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire de Grenoble, FranceUniversité Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, FranceUniversité Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, France; Service de Chirurgie Maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, 74370, Epagny Metz-Tessy, France; Corresponding author.CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France; Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France; Corresponding author.The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic acid (PLA), coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (computed tomography scans, microcomputed tomography scans, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20- to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. Three-dimensional printed PLA scaffolds loaded with reduced doses of BMP-2 may be a safe and simple solution for large bone defects faced in the clinic.http://www.sciencedirect.com/science/article/pii/S2590006421000211ScaffoldBone morphogenetic protein 2 (BMP-2)Tissue engineering3D printingBone regenerationCritical-size bone defect |