3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect

The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic ac...

Full description

Bibliographic Details
Main Authors: M. Bouyer, C. Garot, P. Machillot, J. Vollaire, V. Fitzpatrick, S. Morand, J. Boutonnat, V. Josserand, G. Bettega, C. Picart
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590006421000211
id doaj-4b59499c3d49460db4524c2c98a6e6c6
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. Bouyer
C. Garot
P. Machillot
J. Vollaire
V. Fitzpatrick
S. Morand
J. Boutonnat
V. Josserand
G. Bettega
C. Picart
spellingShingle M. Bouyer
C. Garot
P. Machillot
J. Vollaire
V. Fitzpatrick
S. Morand
J. Boutonnat
V. Josserand
G. Bettega
C. Picart
3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
Materials Today Bio
Scaffold
Bone morphogenetic protein 2 (BMP-2)
Tissue engineering
3D printing
Bone regeneration
Critical-size bone defect
author_facet M. Bouyer
C. Garot
P. Machillot
J. Vollaire
V. Fitzpatrick
S. Morand
J. Boutonnat
V. Josserand
G. Bettega
C. Picart
author_sort M. Bouyer
title 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
title_short 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
title_full 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
title_fullStr 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
title_full_unstemmed 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect
title_sort 3d-printed scaffold combined to 2d osteoinductive coatings to repair a critical-size mandibular bone defect
publisher Elsevier
series Materials Today Bio
issn 2590-0064
publishDate 2021-06-01
description The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic acid (PLA), coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (computed tomography scans, microcomputed tomography scans, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20- to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. Three-dimensional printed PLA scaffolds loaded with reduced doses of BMP-2 may be a safe and simple solution for large bone defects faced in the clinic.
topic Scaffold
Bone morphogenetic protein 2 (BMP-2)
Tissue engineering
3D printing
Bone regeneration
Critical-size bone defect
url http://www.sciencedirect.com/science/article/pii/S2590006421000211
work_keys_str_mv AT mbouyer 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT cgarot 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT pmachillot 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT jvollaire 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT vfitzpatrick 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT smorand 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT jboutonnat 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT vjosserand 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT gbettega 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
AT cpicart 3dprintedscaffoldcombinedto2dosteoinductivecoatingstorepairacriticalsizemandibularbonedefect
_version_ 1717814462060167168
spelling doaj-4b59499c3d49460db4524c2c98a6e6c62021-09-05T04:41:39ZengElsevierMaterials Today Bio2590-00642021-06-01111001133D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defectM. Bouyer0C. Garot1P. Machillot2J. Vollaire3V. Fitzpatrick4S. Morand5J. Boutonnat6V. Josserand7G. Bettega8C. Picart9CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; Clinique Générale d’Annecy, 4 Chemin de la Tour la Reine, 74000, Annecy, FranceCEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, FranceCEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, FranceUniversité Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, FranceCNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, FranceCEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France; Service de Chirurgie Maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, 74370, Epagny Metz-Tessy, FranceUnité Médico-technique d’Histologie Cytologie Expérimentale, Faculté de Médecine, Université Joseph Fourier, 38700, La Tronche, France; Département d’Anatomie et Cytologie Pathologique, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire de Grenoble, FranceUniversité Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, FranceUniversité Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France; INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, France; Service de Chirurgie Maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, 74370, Epagny Metz-Tessy, France; Corresponding author.CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France; CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France; Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France; Corresponding author.The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic acid (PLA), coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (computed tomography scans, microcomputed tomography scans, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20- to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. Three-dimensional printed PLA scaffolds loaded with reduced doses of BMP-2 may be a safe and simple solution for large bone defects faced in the clinic.http://www.sciencedirect.com/science/article/pii/S2590006421000211ScaffoldBone morphogenetic protein 2 (BMP-2)Tissue engineering3D printingBone regenerationCritical-size bone defect