Investigation of behavior of the dynamic contact angle on the basis of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations
Flows of a viscous incompressible liquid with a thermocapillary boundary are investigated numerically on the basis of the mathematical model that consists of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations, kinematic and dynamic conditions at the free boundary and of the slip bo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/matecconf/20168400014 |
Summary: | Flows of a viscous incompressible liquid with a thermocapillary boundary are investigated numerically on the basis of the mathematical model that consists of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations, kinematic and dynamic conditions at the free boundary and of the slip boundary conditions at solid walls. We assume that the constant temperature is kept on the solid walls. On the thermocapillary gas-liquid interface the condition of the third order for temperature is imposed. The numerical algorithm based on a finite-difference scheme of the second order approximation on space and time has been constructed. The numerical experiments are performed for water under conditions of normal and low gravity for different friction coefficients and different values of the interphase heat transfer coefficient. |
---|---|
ISSN: | 2261-236X |