On Stability of a Functional Equation Connected with the Reynolds Operator
<p/> <p>Let <inline-formula><graphic file="1029-242X-2007-079816-i1.gif"/></inline-formula> be an Abelain semigroup, <inline-formula><graphic file="1029-242X-2007-079816-i2.gif"/></inline-formula>, and let <inline-formula><...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2007/079816 |
id |
doaj-4b526a2e1bfe43a4bc2116110e2857f3 |
---|---|
record_format |
Article |
spelling |
doaj-4b526a2e1bfe43a4bc2116110e2857f32020-11-25T02:25:38ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2007-01-0120071079816On Stability of a Functional Equation Connected with the Reynolds OperatorNajdecki Adam<p/> <p>Let <inline-formula><graphic file="1029-242X-2007-079816-i1.gif"/></inline-formula> be an Abelain semigroup, <inline-formula><graphic file="1029-242X-2007-079816-i2.gif"/></inline-formula>, and let <inline-formula><graphic file="1029-242X-2007-079816-i3.gif"/></inline-formula> be either <inline-formula><graphic file="1029-242X-2007-079816-i4.gif"/></inline-formula> or <inline-formula><graphic file="1029-242X-2007-079816-i5.gif"/></inline-formula>. We prove superstability of the functional equation <inline-formula><graphic file="1029-242X-2007-079816-i6.gif"/></inline-formula> in the class of functions <inline-formula><graphic file="1029-242X-2007-079816-i7.gif"/></inline-formula>. We also show some stability results of the equation in the class of functions <inline-formula><graphic file="1029-242X-2007-079816-i8.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2007/079816 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Najdecki Adam |
spellingShingle |
Najdecki Adam On Stability of a Functional Equation Connected with the Reynolds Operator Journal of Inequalities and Applications |
author_facet |
Najdecki Adam |
author_sort |
Najdecki Adam |
title |
On Stability of a Functional Equation Connected with the Reynolds Operator |
title_short |
On Stability of a Functional Equation Connected with the Reynolds Operator |
title_full |
On Stability of a Functional Equation Connected with the Reynolds Operator |
title_fullStr |
On Stability of a Functional Equation Connected with the Reynolds Operator |
title_full_unstemmed |
On Stability of a Functional Equation Connected with the Reynolds Operator |
title_sort |
on stability of a functional equation connected with the reynolds operator |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2007-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1029-242X-2007-079816-i1.gif"/></inline-formula> be an Abelain semigroup, <inline-formula><graphic file="1029-242X-2007-079816-i2.gif"/></inline-formula>, and let <inline-formula><graphic file="1029-242X-2007-079816-i3.gif"/></inline-formula> be either <inline-formula><graphic file="1029-242X-2007-079816-i4.gif"/></inline-formula> or <inline-formula><graphic file="1029-242X-2007-079816-i5.gif"/></inline-formula>. We prove superstability of the functional equation <inline-formula><graphic file="1029-242X-2007-079816-i6.gif"/></inline-formula> in the class of functions <inline-formula><graphic file="1029-242X-2007-079816-i7.gif"/></inline-formula>. We also show some stability results of the equation in the class of functions <inline-formula><graphic file="1029-242X-2007-079816-i8.gif"/></inline-formula>.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2007/079816 |
work_keys_str_mv |
AT najdeckiadam onstabilityofafunctionalequationconnectedwiththereynoldsoperator |
_version_ |
1724850863749464064 |