A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

In this paper, we present the design of a High Spectral Resolution Lidar (HSRL) using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI) with the same free spectral range (FSR) as the transmitted laser....

Full description

Bibliographic Details
Main Authors: Jin Yoshitaka, Sugimoto Nobuo, Nishizawa Tomoaki, Ristori Pablo, Otero Lidia
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/201611902006
Description
Summary:In this paper, we present the design of a High Spectral Resolution Lidar (HSRL) using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI) with the same free spectral range (FSR) as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.
ISSN:2100-014X