EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples
The <i>k</i>-nearest neighbor (<i>k</i>NN) rule is one of the most popular classification algorithms applied in many fields because it is very simple to understand and easy to design. However, one of the major problems encountered in using the <i>k</i>NN rule is t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/8/5/592 |
id |
doaj-4b08f4ba007e46d1bd10302c82e838b8 |
---|---|
record_format |
Article |
spelling |
doaj-4b08f4ba007e46d1bd10302c82e838b82020-11-25T02:10:47ZengMDPI AGElectronics2079-92922019-05-018559210.3390/electronics8050592electronics8050592EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training SamplesLianmeng Jiao0Xiaojiao Geng1Quan Pan2School of Automation, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Automation, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Automation, Northwestern Polytechnical University, Xi’an 710072, ChinaThe <i>k</i>-nearest neighbor (<i>k</i>NN) rule is one of the most popular classification algorithms applied in many fields because it is very simple to understand and easy to design. However, one of the major problems encountered in using the <i>k</i>NN rule is that all of the training samples are considered equally important in the assignment of the class label to the query pattern. In this paper, an evidential editing version of the <i>k</i>NN rule is developed within the framework of belief function theory. The proposal is composed of two procedures. An evidential editing procedure is first proposed to reassign the original training samples with new labels represented by an evidential membership structure, which provides a general representation model regarding the class membership of the training samples. After editing, a classification procedure specifically designed for evidently edited training samples is developed in the belief function framework to handle the more general situation in which the edited training samples are assigned dependent evidential labels. Three synthetic datasets and six real datasets collected from various fields were used to evaluate the performance of the proposed method. The reported results show that the proposal achieves better performance than other considered <i>k</i>NN-based methods, especially for datasets with high imprecision ratios.https://www.mdpi.com/2079-9292/8/5/592pattern classificationk-nearest-neighbor classifierfuzzy editingevidential editingbelief function theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lianmeng Jiao Xiaojiao Geng Quan Pan |
spellingShingle |
Lianmeng Jiao Xiaojiao Geng Quan Pan EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples Electronics pattern classification k-nearest-neighbor classifier fuzzy editing evidential editing belief function theory |
author_facet |
Lianmeng Jiao Xiaojiao Geng Quan Pan |
author_sort |
Lianmeng Jiao |
title |
EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples |
title_short |
EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples |
title_full |
EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples |
title_fullStr |
EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples |
title_full_unstemmed |
EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples |
title_sort |
ee<i>k</i>nn: <i>k</i>-nearest neighbor classifier with an evidential editing procedure for training samples |
publisher |
MDPI AG |
series |
Electronics |
issn |
2079-9292 |
publishDate |
2019-05-01 |
description |
The <i>k</i>-nearest neighbor (<i>k</i>NN) rule is one of the most popular classification algorithms applied in many fields because it is very simple to understand and easy to design. However, one of the major problems encountered in using the <i>k</i>NN rule is that all of the training samples are considered equally important in the assignment of the class label to the query pattern. In this paper, an evidential editing version of the <i>k</i>NN rule is developed within the framework of belief function theory. The proposal is composed of two procedures. An evidential editing procedure is first proposed to reassign the original training samples with new labels represented by an evidential membership structure, which provides a general representation model regarding the class membership of the training samples. After editing, a classification procedure specifically designed for evidently edited training samples is developed in the belief function framework to handle the more general situation in which the edited training samples are assigned dependent evidential labels. Three synthetic datasets and six real datasets collected from various fields were used to evaluate the performance of the proposed method. The reported results show that the proposal achieves better performance than other considered <i>k</i>NN-based methods, especially for datasets with high imprecision ratios. |
topic |
pattern classification k-nearest-neighbor classifier fuzzy editing evidential editing belief function theory |
url |
https://www.mdpi.com/2079-9292/8/5/592 |
work_keys_str_mv |
AT lianmengjiao eeikinnikinearestneighborclassifierwithanevidentialeditingprocedurefortrainingsamples AT xiaojiaogeng eeikinnikinearestneighborclassifierwithanevidentialeditingprocedurefortrainingsamples AT quanpan eeikinnikinearestneighborclassifierwithanevidentialeditingprocedurefortrainingsamples |
_version_ |
1724917468094267392 |