Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, ou...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/26/17/5191 |
id |
doaj-4afcf1a4d4784cc9b1d7e7d97fa33107 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Danillo Valverde Adalberto V. S. de Araújo Antonio Carlos Borin |
spellingShingle |
Danillo Valverde Adalberto V. S. de Araújo Antonio Carlos Borin Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil Molecules 1-cyclohexyluracil uracil derivative photochemical deactivation pathways |
author_facet |
Danillo Valverde Adalberto V. S. de Araújo Antonio Carlos Borin |
author_sort |
Danillo Valverde |
title |
Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil |
title_short |
Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil |
title_full |
Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil |
title_fullStr |
Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil |
title_full_unstemmed |
Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil |
title_sort |
photophysical deactivation mechanisms of the pyrimidine analogue 1-cyclohexyluracil |
publisher |
MDPI AG |
series |
Molecules |
issn |
1420-3049 |
publishDate |
2021-08-01 |
description |
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state to the <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> triplet state via an intersystem crossing process involving the (<inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mrow><mi>S</mi><mi>T</mi><mi>C</mi><mi>P</mi></mrow></msub></semantics></math></inline-formula> singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent. |
topic |
1-cyclohexyluracil uracil derivative photochemical deactivation pathways |
url |
https://www.mdpi.com/1420-3049/26/17/5191 |
work_keys_str_mv |
AT danillovalverde photophysicaldeactivationmechanismsofthepyrimidineanalogue1cyclohexyluracil AT adalbertovsdearaujo photophysicaldeactivationmechanismsofthepyrimidineanalogue1cyclohexyluracil AT antoniocarlosborin photophysicaldeactivationmechanismsofthepyrimidineanalogue1cyclohexyluracil |
_version_ |
1717759614537170944 |
spelling |
doaj-4afcf1a4d4784cc9b1d7e7d97fa331072021-09-09T13:53:02ZengMDPI AGMolecules1420-30492021-08-01265191519110.3390/molecules26175191Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-CyclohexyluracilDanillo Valverde0Adalberto V. S. de Araújo1Antonio Carlos Borin2Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, BrazilDepartment of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, BrazilDepartment of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, BrazilThe photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state to the <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> triplet state via an intersystem crossing process involving the (<inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mrow><mi>S</mi><mi>T</mi><mi>C</mi><mi>P</mi></mrow></msub></semantics></math></inline-formula> singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.https://www.mdpi.com/1420-3049/26/17/51911-cyclohexyluraciluracil derivativephotochemical deactivation pathways |