Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil

The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, ou...

Full description

Bibliographic Details
Main Authors: Danillo Valverde, Adalberto V. S. de Araújo, Antonio Carlos Borin
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/17/5191
id doaj-4afcf1a4d4784cc9b1d7e7d97fa33107
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Danillo Valverde
Adalberto V. S. de Araújo
Antonio Carlos Borin
spellingShingle Danillo Valverde
Adalberto V. S. de Araújo
Antonio Carlos Borin
Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
Molecules
1-cyclohexyluracil
uracil derivative
photochemical deactivation pathways
author_facet Danillo Valverde
Adalberto V. S. de Araújo
Antonio Carlos Borin
author_sort Danillo Valverde
title Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
title_short Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
title_full Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
title_fullStr Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
title_full_unstemmed Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil
title_sort photophysical deactivation mechanisms of the pyrimidine analogue 1-cyclohexyluracil
publisher MDPI AG
series Molecules
issn 1420-3049
publishDate 2021-08-01
description The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state to the <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> triplet state via an intersystem crossing process involving the (<inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mrow><mi>S</mi><mi>T</mi><mi>C</mi><mi>P</mi></mrow></msub></semantics></math></inline-formula> singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.
topic 1-cyclohexyluracil
uracil derivative
photochemical deactivation pathways
url https://www.mdpi.com/1420-3049/26/17/5191
work_keys_str_mv AT danillovalverde photophysicaldeactivationmechanismsofthepyrimidineanalogue1cyclohexyluracil
AT adalbertovsdearaujo photophysicaldeactivationmechanismsofthepyrimidineanalogue1cyclohexyluracil
AT antoniocarlosborin photophysicaldeactivationmechanismsofthepyrimidineanalogue1cyclohexyluracil
_version_ 1717759614537170944
spelling doaj-4afcf1a4d4784cc9b1d7e7d97fa331072021-09-09T13:53:02ZengMDPI AGMolecules1420-30492021-08-01265191519110.3390/molecules26175191Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-CyclohexyluracilDanillo Valverde0Adalberto V. S. de Araújo1Antonio Carlos Borin2Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, BrazilDepartment of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, BrazilDepartment of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, BrazilThe photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> bright state to the <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> triplet state via an intersystem crossing process involving the (<inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">T</mi><mn>2</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mrow><mi>S</mi><mi>T</mi><mi>C</mi><mi>P</mi></mrow></msub></semantics></math></inline-formula> singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the <inline-formula><math display="inline"><semantics><msub><mo>S</mo><mn>1</mn></msub></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>1</mn></msup><mrow><mo>(</mo><mi>π</mi><msup><mrow><mi>π</mi></mrow><mo>*</mo></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.https://www.mdpi.com/1420-3049/26/17/51911-cyclohexyluraciluracil derivativephotochemical deactivation pathways