Denseness of Numerical Radius Attaining Holomorphic Functions

<p/> <p>We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space <inline-formula> <graphic file="1029-242X-2009-981453-i1.gif"/></in...

Full description

Bibliographic Details
Main Author: Lee HanJu
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2009/981453
id doaj-4aed75533cf64b5ba0fd3f0f5b0491fd
record_format Article
spelling doaj-4aed75533cf64b5ba0fd3f0f5b0491fd2020-11-24T23:57:15ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-0120091981453Denseness of Numerical Radius Attaining Holomorphic FunctionsLee HanJu<p/> <p>We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space <inline-formula> <graphic file="1029-242X-2009-981453-i1.gif"/></inline-formula> is locally uniformly convex, then the set of all numerical attaining elements of <inline-formula> <graphic file="1029-242X-2009-981453-i2.gif"/></inline-formula> is dense in <inline-formula> <graphic file="1029-242X-2009-981453-i3.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2009/981453
collection DOAJ
language English
format Article
sources DOAJ
author Lee HanJu
spellingShingle Lee HanJu
Denseness of Numerical Radius Attaining Holomorphic Functions
Journal of Inequalities and Applications
author_facet Lee HanJu
author_sort Lee HanJu
title Denseness of Numerical Radius Attaining Holomorphic Functions
title_short Denseness of Numerical Radius Attaining Holomorphic Functions
title_full Denseness of Numerical Radius Attaining Holomorphic Functions
title_fullStr Denseness of Numerical Radius Attaining Holomorphic Functions
title_full_unstemmed Denseness of Numerical Radius Attaining Holomorphic Functions
title_sort denseness of numerical radius attaining holomorphic functions
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2009-01-01
description <p/> <p>We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space <inline-formula> <graphic file="1029-242X-2009-981453-i1.gif"/></inline-formula> is locally uniformly convex, then the set of all numerical attaining elements of <inline-formula> <graphic file="1029-242X-2009-981453-i2.gif"/></inline-formula> is dense in <inline-formula> <graphic file="1029-242X-2009-981453-i3.gif"/></inline-formula>.</p>
url http://www.journalofinequalitiesandapplications.com/content/2009/981453
work_keys_str_mv AT leehanju densenessofnumericalradiusattainingholomorphicfunctions
_version_ 1725454807219568640