Denseness of Numerical Radius Attaining Holomorphic Functions
<p/> <p>We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space <inline-formula> <graphic file="1029-242X-2009-981453-i1.gif"/></in...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2009/981453 |
id |
doaj-4aed75533cf64b5ba0fd3f0f5b0491fd |
---|---|
record_format |
Article |
spelling |
doaj-4aed75533cf64b5ba0fd3f0f5b0491fd2020-11-24T23:57:15ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-0120091981453Denseness of Numerical Radius Attaining Holomorphic FunctionsLee HanJu<p/> <p>We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space <inline-formula> <graphic file="1029-242X-2009-981453-i1.gif"/></inline-formula> is locally uniformly convex, then the set of all numerical attaining elements of <inline-formula> <graphic file="1029-242X-2009-981453-i2.gif"/></inline-formula> is dense in <inline-formula> <graphic file="1029-242X-2009-981453-i3.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2009/981453 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lee HanJu |
spellingShingle |
Lee HanJu Denseness of Numerical Radius Attaining Holomorphic Functions Journal of Inequalities and Applications |
author_facet |
Lee HanJu |
author_sort |
Lee HanJu |
title |
Denseness of Numerical Radius Attaining Holomorphic Functions |
title_short |
Denseness of Numerical Radius Attaining Holomorphic Functions |
title_full |
Denseness of Numerical Radius Attaining Holomorphic Functions |
title_fullStr |
Denseness of Numerical Radius Attaining Holomorphic Functions |
title_full_unstemmed |
Denseness of Numerical Radius Attaining Holomorphic Functions |
title_sort |
denseness of numerical radius attaining holomorphic functions |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2009-01-01 |
description |
<p/> <p>We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space <inline-formula> <graphic file="1029-242X-2009-981453-i1.gif"/></inline-formula> is locally uniformly convex, then the set of all numerical attaining elements of <inline-formula> <graphic file="1029-242X-2009-981453-i2.gif"/></inline-formula> is dense in <inline-formula> <graphic file="1029-242X-2009-981453-i3.gif"/></inline-formula>.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2009/981453 |
work_keys_str_mv |
AT leehanju densenessofnumericalradiusattainingholomorphicfunctions |
_version_ |
1725454807219568640 |