Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health
Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been asso...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478651/?tool=EBI |
id |
doaj-4ae0dd9b59e844cd8bd5d22b86510b82 |
---|---|
record_format |
Article |
spelling |
doaj-4ae0dd9b59e844cd8bd5d22b86510b822020-11-25T01:29:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01159Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony healthCayley Faurot-DanielsWilliam GlennyKatie F. DaughenbaughAlexander J. McMenaminLaura A. BurkleMichelle L. FlennikenOlav RueppellHoney bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478651/?tool=EBI |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cayley Faurot-Daniels William Glenny Katie F. Daughenbaugh Alexander J. McMenamin Laura A. Burkle Michelle L. Flenniken Olav Rueppell |
spellingShingle |
Cayley Faurot-Daniels William Glenny Katie F. Daughenbaugh Alexander J. McMenamin Laura A. Burkle Michelle L. Flenniken Olav Rueppell Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health PLoS ONE |
author_facet |
Cayley Faurot-Daniels William Glenny Katie F. Daughenbaugh Alexander J. McMenamin Laura A. Burkle Michelle L. Flenniken Olav Rueppell |
author_sort |
Cayley Faurot-Daniels |
title |
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health |
title_short |
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health |
title_full |
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health |
title_fullStr |
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health |
title_full_unstemmed |
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health |
title_sort |
longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of lake sinai virus 2 on colony health |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses. |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478651/?tool=EBI |
work_keys_str_mv |
AT cayleyfaurotdaniels longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth AT williamglenny longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth AT katiefdaughenbaugh longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth AT alexanderjmcmenamin longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth AT lauraaburkle longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth AT michellelflenniken longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth AT olavrueppell longitudinalmonitoringofhoneybeecoloniesrevealsdynamicnatureofvirusabundanceandindicatesanegativeimpactoflakesinaivirus2oncolonyhealth |
_version_ |
1725099138603810816 |