An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting
Additive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/17/3895 |
id |
doaj-4adc0d2acb19474cbe6724adfd1c79de |
---|---|
record_format |
Article |
spelling |
doaj-4adc0d2acb19474cbe6724adfd1c79de2020-11-25T03:18:51ZengMDPI AGMaterials1996-19442020-09-01133895389510.3390/ma13173895An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser MeltingAbbas Razavykia0Eugenio Brusa1Cristiana Delprete2Reza Yavari3Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, ItalyDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, ItalyDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, ItalyMechanical and Materials Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USAAdditive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide range of influencing factors, such as process parameters, material, environment, measurement, and operators training. Investigating the effects of not only the influential AM processes variables but also their interactions and coupled impacts are essential to process optimization which requires huge efforts to be made. Therefore, numerical simulation can be an effective tool that facilities the evaluation of the AM processes principles. Selective Laser Melting (SLM) is a widespread Powder Bed Fusion (PBF) AM process that due to its superior advantages, such as capability to print complex and highly customized components, which leads to an increasing attention paid by industries and academia. Temperature distribution and melt pool dynamics have paramount importance to be well simulated and correlated by part quality in terms of surface finish, induced residual stress and microstructure evolution during SLM. Summarizing numerical simulations of SLM in this survey is pointed out as one important research perspective as well as exploring the contribution of adopted approaches and practices. This review survey has been organized to give an overview of AM processes such as extrusion, photopolymerization, material jetting, laminated object manufacturing, and powder bed fusion. And in particular is targeted to discuss the conducted numerical simulation of SLM to illustrate a uniform picture of existing nonproprietary approaches to predict the heat transfer, melt pool behavior, microstructure and residual stresses analysis.https://www.mdpi.com/1996-1944/13/17/3895additive manufacturingextrusionphotopolymerizationmaterial jettinglaminated object manufacturingpowder bed fusion |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abbas Razavykia Eugenio Brusa Cristiana Delprete Reza Yavari |
spellingShingle |
Abbas Razavykia Eugenio Brusa Cristiana Delprete Reza Yavari An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting Materials additive manufacturing extrusion photopolymerization material jetting laminated object manufacturing powder bed fusion |
author_facet |
Abbas Razavykia Eugenio Brusa Cristiana Delprete Reza Yavari |
author_sort |
Abbas Razavykia |
title |
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting |
title_short |
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting |
title_full |
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting |
title_fullStr |
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting |
title_full_unstemmed |
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting |
title_sort |
overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2020-09-01 |
description |
Additive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide range of influencing factors, such as process parameters, material, environment, measurement, and operators training. Investigating the effects of not only the influential AM processes variables but also their interactions and coupled impacts are essential to process optimization which requires huge efforts to be made. Therefore, numerical simulation can be an effective tool that facilities the evaluation of the AM processes principles. Selective Laser Melting (SLM) is a widespread Powder Bed Fusion (PBF) AM process that due to its superior advantages, such as capability to print complex and highly customized components, which leads to an increasing attention paid by industries and academia. Temperature distribution and melt pool dynamics have paramount importance to be well simulated and correlated by part quality in terms of surface finish, induced residual stress and microstructure evolution during SLM. Summarizing numerical simulations of SLM in this survey is pointed out as one important research perspective as well as exploring the contribution of adopted approaches and practices. This review survey has been organized to give an overview of AM processes such as extrusion, photopolymerization, material jetting, laminated object manufacturing, and powder bed fusion. And in particular is targeted to discuss the conducted numerical simulation of SLM to illustrate a uniform picture of existing nonproprietary approaches to predict the heat transfer, melt pool behavior, microstructure and residual stresses analysis. |
topic |
additive manufacturing extrusion photopolymerization material jetting laminated object manufacturing powder bed fusion |
url |
https://www.mdpi.com/1996-1944/13/17/3895 |
work_keys_str_mv |
AT abbasrazavykia anoverviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT eugeniobrusa anoverviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT cristianadelprete anoverviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT rezayavari anoverviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT abbasrazavykia overviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT eugeniobrusa overviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT cristianadelprete overviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting AT rezayavari overviewofadditivemanufacturingtechnologiesareviewtotechnicalsynthesisinnumericalstudyofselectivelasermelting |
_version_ |
1724625463335190528 |