Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
A class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the b...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-05-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/doi/10.3934/math.2021453?viewType=HTML |
id |
doaj-4acf122dbe5b4688a9249a5eb48c9116 |
---|---|
record_format |
Article |
spelling |
doaj-4acf122dbe5b4688a9249a5eb48c91162021-05-27T01:12:14ZengAIMS PressAIMS Mathematics2473-69882021-05-01677782779710.3934/math.2021453Embedding and Volterra integral operators on a class of Dirichlet-Morrey spacesLian Hu0Rong Yang1Songxiao Li 2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaA class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the boundedness of the Volterra integral operator $ T_g: D_{\beta, \lambda} \to F(1, \beta-s, s) $ is studied. Moreover, the essential norm and the compactness of the operator $ T_g $ are also investigated. http://www.aimspress.com/article/doi/10.3934/math.2021453?viewType=HTMLdirichlet-morrey spacecarleson measurevolterra integral operator |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lian Hu Rong Yang Songxiao Li |
spellingShingle |
Lian Hu Rong Yang Songxiao Li Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces AIMS Mathematics dirichlet-morrey space carleson measure volterra integral operator |
author_facet |
Lian Hu Rong Yang Songxiao Li |
author_sort |
Lian Hu |
title |
Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces |
title_short |
Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces |
title_full |
Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces |
title_fullStr |
Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces |
title_full_unstemmed |
Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces |
title_sort |
embedding and volterra integral operators on a class of dirichlet-morrey spaces |
publisher |
AIMS Press |
series |
AIMS Mathematics |
issn |
2473-6988 |
publishDate |
2021-05-01 |
description |
A class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the boundedness of the Volterra integral operator $ T_g: D_{\beta, \lambda} \to F(1, \beta-s, s) $ is studied. Moreover, the essential norm and the compactness of the operator $ T_g $ are also investigated.
|
topic |
dirichlet-morrey space carleson measure volterra integral operator |
url |
http://www.aimspress.com/article/doi/10.3934/math.2021453?viewType=HTML |
work_keys_str_mv |
AT lianhu embeddingandvolterraintegraloperatorsonaclassofdirichletmorreyspaces AT rongyang embeddingandvolterraintegraloperatorsonaclassofdirichletmorreyspaces AT songxiaoli embeddingandvolterraintegraloperatorsonaclassofdirichletmorreyspaces |
_version_ |
1721425974318333952 |