Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces

A class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the b...

Full description

Bibliographic Details
Main Authors: Lian Hu, Rong Yang, Songxiao Li
Format: Article
Language:English
Published: AIMS Press 2021-05-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021453?viewType=HTML
id doaj-4acf122dbe5b4688a9249a5eb48c9116
record_format Article
spelling doaj-4acf122dbe5b4688a9249a5eb48c91162021-05-27T01:12:14ZengAIMS PressAIMS Mathematics2473-69882021-05-01677782779710.3934/math.2021453Embedding and Volterra integral operators on a class of Dirichlet-Morrey spacesLian Hu0Rong Yang1Songxiao Li 2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaA class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the boundedness of the Volterra integral operator $ T_g: D_{\beta, \lambda} \to F(1, \beta-s, s) $ is studied. Moreover, the essential norm and the compactness of the operator $ T_g $ are also investigated. http://www.aimspress.com/article/doi/10.3934/math.2021453?viewType=HTMLdirichlet-morrey spacecarleson measurevolterra integral operator
collection DOAJ
language English
format Article
sources DOAJ
author Lian Hu
Rong Yang
Songxiao Li
spellingShingle Lian Hu
Rong Yang
Songxiao Li
Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
AIMS Mathematics
dirichlet-morrey space
carleson measure
volterra integral operator
author_facet Lian Hu
Rong Yang
Songxiao Li
author_sort Lian Hu
title Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
title_short Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
title_full Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
title_fullStr Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
title_full_unstemmed Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces
title_sort embedding and volterra integral operators on a class of dirichlet-morrey spaces
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2021-05-01
description A class of Dirichlet-Morrey spaces $ D_{\beta, \lambda} $ is introduced in this paper. For any positive Borel measure $ \mu $, the boundedness and compactness of the identity operator from $ D_{\beta, \lambda} $ into the tent space $ \mathcal{T}_s^1(\mu) $ are characterized. As an application, the boundedness of the Volterra integral operator $ T_g: D_{\beta, \lambda} \to F(1, \beta-s, s) $ is studied. Moreover, the essential norm and the compactness of the operator $ T_g $ are also investigated.
topic dirichlet-morrey space
carleson measure
volterra integral operator
url http://www.aimspress.com/article/doi/10.3934/math.2021453?viewType=HTML
work_keys_str_mv AT lianhu embeddingandvolterraintegraloperatorsonaclassofdirichletmorreyspaces
AT rongyang embeddingandvolterraintegraloperatorsonaclassofdirichletmorreyspaces
AT songxiaoli embeddingandvolterraintegraloperatorsonaclassofdirichletmorreyspaces
_version_ 1721425974318333952