Neural substrates of motor and non-motor symptoms in Parkinson's disease: a resting FMRI study.

<h4>Background</h4>Recently, non-motor symptoms of Parkinson's disease (PD) have been considered crucial factors in determining a patient's quality of life and have been proposed as the predominant features of the premotor phase. Researchers have investigated the relationship b...

Full description

Bibliographic Details
Main Authors: Kwangsun Yoo, Sun Ju Chung, Ho Sung Kim, Oh-Hyeon Choung, Young-Beom Lee, Mi-Jung Kim, Sooyeoun You, Yong Jeong
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0125455
Description
Summary:<h4>Background</h4>Recently, non-motor symptoms of Parkinson's disease (PD) have been considered crucial factors in determining a patient's quality of life and have been proposed as the predominant features of the premotor phase. Researchers have investigated the relationship between non-motor symptoms and the motor laterality; however, this relationship remains disputed. This study investigated the neural connectivity correlates of non-motor and motor symptoms of PD with respect to motor laterality.<h4>Methods</h4>Eight-seven patients with PD were recruited and classified into left-more-affected PD (n = 44) and right-more affected PD (n = 37) based on their MDS-UPDRS (Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale) motor examination scores. The patients underwent MRI scanning, which included resting fMRI. Brain regions were labeled as ipsilateral and contralateral to the more-affected body side. Correlation analysis between the functional connectivity across brain regions and the scores of various symptoms was performed to identify the neural connectivity correlates of each symptom.<h4>Results</h4>The resting functional connectivity centered on the ipsilateral inferior orbito-frontal area was negatively correlated with the severity of non-motor symptoms, and the connectivity of the contralateral inferior parietal area was positively correlated with the severity of motor symptoms (p < 0.001, |r| > 0.3).<h4>Conclusions</h4>These results suggest that the inferior orbito-frontal area may play a crucial role in non-motor dysfunctions, and that the connectivity information may be utilized as a neuroimaging biomarker for the early diagnosis of PD.
ISSN:1932-6203