Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia

Visualizing molecular transformations in real-time requires a structural retrieval method with Ångström spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method sensitive to the atomic positions of hydrogen nuclei, with most...

Full description

Bibliographic Details
Main Authors: B. Belsa, K. Amini, X. Liu, A. Sanchez, T. Steinle, J. Steinmetzer, A. T. Le, R. Moshammer, T. Pfeifer, J. Ullrich, R. Moszynski, C. D. Lin, S. Gräfe, J. Biegert
Format: Article
Language:English
Published: AIP Publishing LLC and ACA 2021-01-01
Series:Structural Dynamics
Online Access:http://dx.doi.org/10.1063/4.0000046
id doaj-4ab9080b7c944e9da273f4d47c0d0843
record_format Article
spelling doaj-4ab9080b7c944e9da273f4d47c0d08432021-03-02T21:47:43ZengAIP Publishing LLC and ACAStructural Dynamics2329-77782021-01-0181014301014301-810.1063/4.0000046Laser-induced electron diffraction of the ultrafast umbrella motion in ammoniaB. Belsa0K. Amini1X. Liu2A. Sanchez3T. Steinle4J. Steinmetzer5A. T. Le6R. Moshammer7T. Pfeifer8J. Ullrich9R. Moszynski10C. D. Lin11S. Gräfe12J. Biegert13 ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland Department of Physics, J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506-2604, USA Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, SpainVisualizing molecular transformations in real-time requires a structural retrieval method with Ångström spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method sensitive to the atomic positions of hydrogen nuclei, with most methods possessing relatively low sensitivity to hydrogen scattering. Laser-induced electron diffraction (LIED) is a table-top technique that can image ultrafast structural changes of gas-phase polyatomic molecules with sub-Ångström and femtosecond spatiotemporal resolution together with relatively high sensitivity to hydrogen scattering. Here, we image the umbrella motion of an isolated ammonia molecule (NH3) following its strong-field ionization. Upon ionization of a neutral ammonia molecule, the ammonia cation (NH3+) undergoes an ultrafast geometrical transformation from a pyramidal ( Φ HNH = 107 °) to planar ( Φ HNH = 120 °) structure in approximately 8 femtoseconds. Using LIED, we retrieve a near-planar ( Φ HNH = 117   ±   5 °) field-dressed NH3+ molecular structure 7.8 − 9.8 femtoseconds after ionization. Our measured field-dressed NH3+ structure is in excellent agreement with our calculated equilibrium field-dressed structure using quantum chemical ab initio calculations.http://dx.doi.org/10.1063/4.0000046
collection DOAJ
language English
format Article
sources DOAJ
author B. Belsa
K. Amini
X. Liu
A. Sanchez
T. Steinle
J. Steinmetzer
A. T. Le
R. Moshammer
T. Pfeifer
J. Ullrich
R. Moszynski
C. D. Lin
S. Gräfe
J. Biegert
spellingShingle B. Belsa
K. Amini
X. Liu
A. Sanchez
T. Steinle
J. Steinmetzer
A. T. Le
R. Moshammer
T. Pfeifer
J. Ullrich
R. Moszynski
C. D. Lin
S. Gräfe
J. Biegert
Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
Structural Dynamics
author_facet B. Belsa
K. Amini
X. Liu
A. Sanchez
T. Steinle
J. Steinmetzer
A. T. Le
R. Moshammer
T. Pfeifer
J. Ullrich
R. Moszynski
C. D. Lin
S. Gräfe
J. Biegert
author_sort B. Belsa
title Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
title_short Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
title_full Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
title_fullStr Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
title_full_unstemmed Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
title_sort laser-induced electron diffraction of the ultrafast umbrella motion in ammonia
publisher AIP Publishing LLC and ACA
series Structural Dynamics
issn 2329-7778
publishDate 2021-01-01
description Visualizing molecular transformations in real-time requires a structural retrieval method with Ångström spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method sensitive to the atomic positions of hydrogen nuclei, with most methods possessing relatively low sensitivity to hydrogen scattering. Laser-induced electron diffraction (LIED) is a table-top technique that can image ultrafast structural changes of gas-phase polyatomic molecules with sub-Ångström and femtosecond spatiotemporal resolution together with relatively high sensitivity to hydrogen scattering. Here, we image the umbrella motion of an isolated ammonia molecule (NH3) following its strong-field ionization. Upon ionization of a neutral ammonia molecule, the ammonia cation (NH3+) undergoes an ultrafast geometrical transformation from a pyramidal ( Φ HNH = 107 °) to planar ( Φ HNH = 120 °) structure in approximately 8 femtoseconds. Using LIED, we retrieve a near-planar ( Φ HNH = 117   ±   5 °) field-dressed NH3+ molecular structure 7.8 − 9.8 femtoseconds after ionization. Our measured field-dressed NH3+ structure is in excellent agreement with our calculated equilibrium field-dressed structure using quantum chemical ab initio calculations.
url http://dx.doi.org/10.1063/4.0000046
work_keys_str_mv AT bbelsa laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT kamini laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT xliu laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT asanchez laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT tsteinle laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT jsteinmetzer laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT atle laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT rmoshammer laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT tpfeifer laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT jullrich laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT rmoszynski laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT cdlin laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT sgrafe laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
AT jbiegert laserinducedelectrondiffractionoftheultrafastumbrellamotioninammonia
_version_ 1724234092820561920