Summary: | Hepatitis B virus (HBV) is the fatal consequence of chronic hepatitis, and lack of biomarkers has been a long standing bottleneck in the clinical diagnosis. Metabolomics concerns with comprehensive analysis of small molecules and provides a powerful approach to discover biomarkers in biological systems. Here, we present metabolomics analysis applying ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. (UPLC-Q-TOF-HDMS) to determine metabolite alterations in HBV patients. Most important permutations are elaborated using multivariate statistical analysis and network analysis that was used to select the metabolites for the noninvasive diagnosis of HBV. In this study, the total 11 urinary differential metabolites were identified and contributed to HBV progress involving several key metabolic pathways by using pathway analysis with MetPA, which are promising biomarker candidates for diagnostic research. More importantly, of 11 altered metabolites, 4 metabolite markers were effective for the diagnosis of human HBV, achieved a satisfactory accuracy, sensitivity and specificity, respectively. It demonstrates that metabolomics has the potential as a non-invasive tool to evaluate the potential of these metabolites in the early diagnosis of HBV patients. These findings may be promising to yield a valuable insight into the pathophysiology of HBV and to advance the approaches of diagnosis, treatment, and prevention.
|