A Nonequilibrium Model for Particle Networking/Jamming and Time-Dependent Dynamic Rheology of Filled Polymers

We describe an approach for modeling the filler network formation kinetics of particle-reinforced rubbery polymers—commonly called filler flocculation—that was developed by employing parallels between deformation effects in jammed particle systems and the influence of temperature...

Full description

Bibliographic Details
Main Authors: Christopher G. Robertson, Sankar Raman Vaikuntam, Gert Heinrich
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/1/190
Description
Summary:We describe an approach for modeling the filler network formation kinetics of particle-reinforced rubbery polymers—commonly called filler flocculation—that was developed by employing parallels between deformation effects in jammed particle systems and the influence of temperature on glass-forming materials. Experimental dynamic viscosity results were obtained concerning the strain-induced particle network breakdown and subsequent time-dependent reformation behavior for uncross-linked elastomers reinforced with carbon black and silica nanoparticles. Using a relaxation time function that depends on both actual dynamic strain amplitude and fictive (structural) strain, the model effectively represented the experimental data for three different levels of dynamic strain down-jump with a single set of parameters. This fictive strain model for filler networking is analogous to the established Tool−Narayanaswamy−Moynihan model for structural relaxation (physical aging) of nonequilibrium glasses. Compared to carbon black, precipitated silica particles without silane surface modification exhibited a greater overall extent of filler networking and showed more self-limiting behavior in terms of network formation kinetics in filled ethylene-propylene-diene rubber (EPDM). The EPDM compounds with silica or carbon black filler were stable during the dynamic shearing and recovery experiments at 160 °C, whereas irreversible dynamic modulus increases were noted when the polymer matrix was styrene-butadiene rubber (SBR), presumably due to branching/cross-linking of SBR in the rheometer. Care must be taken when measuring and interpreting the time-dependent filler networking in unsaturated elastomers at high temperatures.
ISSN:2073-4360