Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region

Discussion on the application of fractional derivative algorithm in monitoring organic matter content in field soil is scarce. This study is aimed at improving the accuracy of soil organic matter (SOM) content estimation in arid region, and the undesirable model precision caused by the missing infor...

Full description

Bibliographic Details
Main Authors: Cheng-Biao Fu, Hei-Gang Xiong, An-Hong Tian
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2019/7159317
id doaj-4a9964e180e243828414039366d075bc
record_format Article
spelling doaj-4a9964e180e243828414039366d075bc2020-11-24T22:10:08ZengHindawi LimitedJournal of Spectroscopy2314-49202314-49392019-01-01201910.1155/2019/71593177159317Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid RegionCheng-Biao Fu0Hei-Gang Xiong1An-Hong Tian2College of Information Engineering, Qujing Normal University, Qujing 655011, Yunnan, ChinaCollege of Applied Arts and Science, Beijing Union University, Beijing 100083, ChinaCollege of Information Engineering, Qujing Normal University, Qujing 655011, Yunnan, ChinaDiscussion on the application of fractional derivative algorithm in monitoring organic matter content in field soil is scarce. This study is aimed at improving the accuracy of soil organic matter (SOM) content estimation in arid region, and the undesirable model precision caused by the missing information associated with the larger discrepancy between conventional integer-order, i.e., first order and second order, derivative, and raw spectral data. We utilized fractional derivative (of zeroth order to second order in 0.2-order interval) processing on the field spectral reflectance (R) of the salinized soil sample from Fukang, Xinjiang, and its square root-transformed (R), log-transformed (lgR), inverse-transformed (1/R), and inverse log-transformed (1/lgR) values. The correlation coefficient of each fractional derivative of transformed value with SOM content was calculated. The simulation showed the derivative reflectance value approximates zero. When increasing from zeroth order to first order, the derivative curve gradually aligns to the first-order curve, and the destination alignment was also seen while increasing from first order to second order. The significance test of 0.05 showed initial increase and later decay of bands in the five spectral transformations as the order increases. For specific bands, the derivative algorithm clearly justifies the correlation between soil spectra and organic matter content, and all of the absolute highest correlation coefficient values were obtained at fractional orders. When compared with integer-order derivative, fractional derivative is significantly better in improving correlation, showing overall superiority. The result supports the application of fractional derivative in the hyperspectral remote monitor of SOM in arid zone, which may in turn realize the timely and accurate SOM monitor in arid zone, and provides the basis for ecological restoration.http://dx.doi.org/10.1155/2019/7159317
collection DOAJ
language English
format Article
sources DOAJ
author Cheng-Biao Fu
Hei-Gang Xiong
An-Hong Tian
spellingShingle Cheng-Biao Fu
Hei-Gang Xiong
An-Hong Tian
Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region
Journal of Spectroscopy
author_facet Cheng-Biao Fu
Hei-Gang Xiong
An-Hong Tian
author_sort Cheng-Biao Fu
title Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region
title_short Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region
title_full Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region
title_fullStr Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region
title_full_unstemmed Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region
title_sort study on the effect of fractional derivative on the hyperspectral data of soil organic matter content in arid region
publisher Hindawi Limited
series Journal of Spectroscopy
issn 2314-4920
2314-4939
publishDate 2019-01-01
description Discussion on the application of fractional derivative algorithm in monitoring organic matter content in field soil is scarce. This study is aimed at improving the accuracy of soil organic matter (SOM) content estimation in arid region, and the undesirable model precision caused by the missing information associated with the larger discrepancy between conventional integer-order, i.e., first order and second order, derivative, and raw spectral data. We utilized fractional derivative (of zeroth order to second order in 0.2-order interval) processing on the field spectral reflectance (R) of the salinized soil sample from Fukang, Xinjiang, and its square root-transformed (R), log-transformed (lgR), inverse-transformed (1/R), and inverse log-transformed (1/lgR) values. The correlation coefficient of each fractional derivative of transformed value with SOM content was calculated. The simulation showed the derivative reflectance value approximates zero. When increasing from zeroth order to first order, the derivative curve gradually aligns to the first-order curve, and the destination alignment was also seen while increasing from first order to second order. The significance test of 0.05 showed initial increase and later decay of bands in the five spectral transformations as the order increases. For specific bands, the derivative algorithm clearly justifies the correlation between soil spectra and organic matter content, and all of the absolute highest correlation coefficient values were obtained at fractional orders. When compared with integer-order derivative, fractional derivative is significantly better in improving correlation, showing overall superiority. The result supports the application of fractional derivative in the hyperspectral remote monitor of SOM in arid zone, which may in turn realize the timely and accurate SOM monitor in arid zone, and provides the basis for ecological restoration.
url http://dx.doi.org/10.1155/2019/7159317
work_keys_str_mv AT chengbiaofu studyontheeffectoffractionalderivativeonthehyperspectraldataofsoilorganicmattercontentinaridregion
AT heigangxiong studyontheeffectoffractionalderivativeonthehyperspectraldataofsoilorganicmattercontentinaridregion
AT anhongtian studyontheeffectoffractionalderivativeonthehyperspectraldataofsoilorganicmattercontentinaridregion
_version_ 1725809125141512192