On regular handicap graphs of order $n \equiv 0$ mod 8

<p>A handicap distance antimagic labeling of a graph <span class="math"><em>G</em> = (<em>V</em>, <em>E</em>)</span> with <span class="math"><em>n</em></span> vertices is a bijection <span class=&quo...

Full description

Bibliographic Details
Main Authors: Dalibor Froncek, Aaron Shepanik
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2018-10-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/506
id doaj-4a9910672de947d38d37f7f9d7c4b4f6
record_format Article
spelling doaj-4a9910672de947d38d37f7f9d7c4b4f62021-03-11T01:13:05ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872018-10-016220821810.5614/ejgta.2018.6.2.1117On regular handicap graphs of order $n \equiv 0$ mod 8Dalibor Froncek0Aaron Shepanik1Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, USADepartment of Mathematics and Statistics, University of Minnesota Duluth Duluth, USA<p>A handicap distance antimagic labeling of a graph <span class="math"><em>G</em> = (<em>V</em>, <em>E</em>)</span> with <span class="math"><em>n</em></span> vertices is a bijection <span class="math"><em>f̂</em> : <em>V</em> → {1, 2, …, <em>n</em>}</span> with the property that <span class="math"><em>f̂</em>(<em>x</em><sub><em>i</em></sub>) = <em>i</em></span>, the <span><em>weight</em></span> <span class="math"><em>w</em>(<em>x</em><sub><em>i</em></sub>)</span> is the sum of labels of all neighbors of <span class="math"><em>x</em><sub><em>i</em></sub></span>, and the sequence of the weights <span class="math"><em>w</em>(<em>x</em><sub>1</sub>), <em>w</em>(<em>x</em><sub>2</sub>), …, <em>w</em>(<em>x</em><sub><em>n</em></sub>)</span> forms an increasing arithmetic progression. A graph <span class="math"><em>G</em></span> is a <span><em>handicap distance antimagic graph</em></span> if it allows a handicap distance antimagic labeling. We construct <span class="math"><em>r</em></span>-regular handicap distance antimagic graphs of order <span class="math">$n \equiv 0 \pmod{8}$</span> for all feasible values of <span class="math"><em>r</em></span>.</p>https://www.ejgta.org/index.php/ejgta/article/view/506graph labeling, handicap labeling, regular graphs, tournament scheduling
collection DOAJ
language English
format Article
sources DOAJ
author Dalibor Froncek
Aaron Shepanik
spellingShingle Dalibor Froncek
Aaron Shepanik
On regular handicap graphs of order $n \equiv 0$ mod 8
Electronic Journal of Graph Theory and Applications
graph labeling, handicap labeling, regular graphs, tournament scheduling
author_facet Dalibor Froncek
Aaron Shepanik
author_sort Dalibor Froncek
title On regular handicap graphs of order $n \equiv 0$ mod 8
title_short On regular handicap graphs of order $n \equiv 0$ mod 8
title_full On regular handicap graphs of order $n \equiv 0$ mod 8
title_fullStr On regular handicap graphs of order $n \equiv 0$ mod 8
title_full_unstemmed On regular handicap graphs of order $n \equiv 0$ mod 8
title_sort on regular handicap graphs of order $n \equiv 0$ mod 8
publisher Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
series Electronic Journal of Graph Theory and Applications
issn 2338-2287
publishDate 2018-10-01
description <p>A handicap distance antimagic labeling of a graph <span class="math"><em>G</em> = (<em>V</em>, <em>E</em>)</span> with <span class="math"><em>n</em></span> vertices is a bijection <span class="math"><em>f̂</em> : <em>V</em> → {1, 2, …, <em>n</em>}</span> with the property that <span class="math"><em>f̂</em>(<em>x</em><sub><em>i</em></sub>) = <em>i</em></span>, the <span><em>weight</em></span> <span class="math"><em>w</em>(<em>x</em><sub><em>i</em></sub>)</span> is the sum of labels of all neighbors of <span class="math"><em>x</em><sub><em>i</em></sub></span>, and the sequence of the weights <span class="math"><em>w</em>(<em>x</em><sub>1</sub>), <em>w</em>(<em>x</em><sub>2</sub>), …, <em>w</em>(<em>x</em><sub><em>n</em></sub>)</span> forms an increasing arithmetic progression. A graph <span class="math"><em>G</em></span> is a <span><em>handicap distance antimagic graph</em></span> if it allows a handicap distance antimagic labeling. We construct <span class="math"><em>r</em></span>-regular handicap distance antimagic graphs of order <span class="math">$n \equiv 0 \pmod{8}$</span> for all feasible values of <span class="math"><em>r</em></span>.</p>
topic graph labeling, handicap labeling, regular graphs, tournament scheduling
url https://www.ejgta.org/index.php/ejgta/article/view/506
work_keys_str_mv AT daliborfroncek onregularhandicapgraphsofordernequiv0mod8
AT aaronshepanik onregularhandicapgraphsofordernequiv0mod8
_version_ 1714790734005010432