On regular handicap graphs of order $n \equiv 0$ mod 8
<p>A handicap distance antimagic labeling of a graph <span class="math"><em>G</em> = (<em>V</em>, <em>E</em>)</span> with <span class="math"><em>n</em></span> vertices is a bijection <span class=&quo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
2018-10-01
|
Series: | Electronic Journal of Graph Theory and Applications |
Subjects: | |
Online Access: | https://www.ejgta.org/index.php/ejgta/article/view/506 |
id |
doaj-4a9910672de947d38d37f7f9d7c4b4f6 |
---|---|
record_format |
Article |
spelling |
doaj-4a9910672de947d38d37f7f9d7c4b4f62021-03-11T01:13:05ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872018-10-016220821810.5614/ejgta.2018.6.2.1117On regular handicap graphs of order $n \equiv 0$ mod 8Dalibor Froncek0Aaron Shepanik1Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, USADepartment of Mathematics and Statistics, University of Minnesota Duluth Duluth, USA<p>A handicap distance antimagic labeling of a graph <span class="math"><em>G</em> = (<em>V</em>, <em>E</em>)</span> with <span class="math"><em>n</em></span> vertices is a bijection <span class="math"><em>f̂</em> : <em>V</em> → {1, 2, …, <em>n</em>}</span> with the property that <span class="math"><em>f̂</em>(<em>x</em><sub><em>i</em></sub>) = <em>i</em></span>, the <span><em>weight</em></span> <span class="math"><em>w</em>(<em>x</em><sub><em>i</em></sub>)</span> is the sum of labels of all neighbors of <span class="math"><em>x</em><sub><em>i</em></sub></span>, and the sequence of the weights <span class="math"><em>w</em>(<em>x</em><sub>1</sub>), <em>w</em>(<em>x</em><sub>2</sub>), …, <em>w</em>(<em>x</em><sub><em>n</em></sub>)</span> forms an increasing arithmetic progression. A graph <span class="math"><em>G</em></span> is a <span><em>handicap distance antimagic graph</em></span> if it allows a handicap distance antimagic labeling. We construct <span class="math"><em>r</em></span>-regular handicap distance antimagic graphs of order <span class="math">$n \equiv 0 \pmod{8}$</span> for all feasible values of <span class="math"><em>r</em></span>.</p>https://www.ejgta.org/index.php/ejgta/article/view/506graph labeling, handicap labeling, regular graphs, tournament scheduling |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dalibor Froncek Aaron Shepanik |
spellingShingle |
Dalibor Froncek Aaron Shepanik On regular handicap graphs of order $n \equiv 0$ mod 8 Electronic Journal of Graph Theory and Applications graph labeling, handicap labeling, regular graphs, tournament scheduling |
author_facet |
Dalibor Froncek Aaron Shepanik |
author_sort |
Dalibor Froncek |
title |
On regular handicap graphs of order $n \equiv 0$ mod 8 |
title_short |
On regular handicap graphs of order $n \equiv 0$ mod 8 |
title_full |
On regular handicap graphs of order $n \equiv 0$ mod 8 |
title_fullStr |
On regular handicap graphs of order $n \equiv 0$ mod 8 |
title_full_unstemmed |
On regular handicap graphs of order $n \equiv 0$ mod 8 |
title_sort |
on regular handicap graphs of order $n \equiv 0$ mod 8 |
publisher |
Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia |
series |
Electronic Journal of Graph Theory and Applications |
issn |
2338-2287 |
publishDate |
2018-10-01 |
description |
<p>A handicap distance antimagic labeling of a graph <span class="math"><em>G</em> = (<em>V</em>, <em>E</em>)</span> with <span class="math"><em>n</em></span> vertices is a bijection <span class="math"><em>f̂</em> : <em>V</em> → {1, 2, …, <em>n</em>}</span> with the property that <span class="math"><em>f̂</em>(<em>x</em><sub><em>i</em></sub>) = <em>i</em></span>, the <span><em>weight</em></span> <span class="math"><em>w</em>(<em>x</em><sub><em>i</em></sub>)</span> is the sum of labels of all neighbors of <span class="math"><em>x</em><sub><em>i</em></sub></span>, and the sequence of the weights <span class="math"><em>w</em>(<em>x</em><sub>1</sub>), <em>w</em>(<em>x</em><sub>2</sub>), …, <em>w</em>(<em>x</em><sub><em>n</em></sub>)</span> forms an increasing arithmetic progression. A graph <span class="math"><em>G</em></span> is a <span><em>handicap distance antimagic graph</em></span> if it allows a handicap distance antimagic labeling. We construct <span class="math"><em>r</em></span>-regular handicap distance antimagic graphs of order <span class="math">$n \equiv 0 \pmod{8}$</span> for all feasible values of <span class="math"><em>r</em></span>.</p> |
topic |
graph labeling, handicap labeling, regular graphs, tournament scheduling |
url |
https://www.ejgta.org/index.php/ejgta/article/view/506 |
work_keys_str_mv |
AT daliborfroncek onregularhandicapgraphsofordernequiv0mod8 AT aaronshepanik onregularhandicapgraphsofordernequiv0mod8 |
_version_ |
1714790734005010432 |