Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis
Abstract Background Myocardial infarction (MI) is an acute and fatal condition that threatens human health. Dl-3-n-butylphthalide (NBP) has been used for the treatment of acute ischemic stroke. Mitochondria may play a protective role in MI injury. However, there are few reports on the cardioprotecti...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-06-01
|
Series: | Journal of Biomedical Science |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12929-017-0345-9 |
id |
doaj-4a5f1515ac8f4361b3de1d31a7500261 |
---|---|
record_format |
Article |
spelling |
doaj-4a5f1515ac8f4361b3de1d31a75002612020-11-24T21:55:34ZengBMCJournal of Biomedical Science1423-01272017-06-0124111010.1186/s12929-017-0345-9Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesisXiaochao Tian0Weiliang He1Rong Yang2Yingping Liu3Department of Cardiology, The Second Hospital of Hebei Medical UniversityDepartment of Neurology, Hebei General HospitalDepartment of Cardiology, The Second Hospital of Hebei Medical UniversityDepartment of Cardiology, Beijing Shijitan Hospital, Capital Medical UniversityAbstract Background Myocardial infarction (MI) is an acute and fatal condition that threatens human health. Dl-3-n-butylphthalide (NBP) has been used for the treatment of acute ischemic stroke. Mitochondria may play a protective role in MI injury. However, there are few reports on the cardioprotective effect of NBP or the potential mitochondrial mechanism for the NBP-induced protection against cardiac ischemia injury. We investigated the therapeutic effects of NBP in an in vivo MI model and an in vitro oxidative stress model, as well as the potential mitochondrial mechanism. Methods This study comprised two different experiments. The aim of experiment 1 was to determine the protective effects of NBP on MI and the underlying mechanisms in vivo. In part 1, myocardial infarct size was measured by staining with 2,3,5-triphenyltetrazoliumchloride (TTC). Myocardial enzymes and mitochondrial enzymes were assayed. The aim of experiment 2 was to investigate the role of NBP in H2O2-induced myocardial ischemic injury in H9c2 cells and to determine the potential mechanism. In part 2, H9c2 cell viability was evaluated. ROS levels, mitochondrial morphology, and mitochondrial membrane potential of H9c2 cells were measured. ATP levels were evaluated using an assay kit; mitochondrial DNA (mtDNA), the expressions of NRF-1 and TFAM, and mitochondrial biogenesis factors were determined. Results NBP treatment significantly reduced the infarct ratio, as observed by TTC staining, decreased serum myocardial enzymes in MI, and restored heart mitochondrial enzymes (isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and a-ketoglutarate dehydrogenase (a-KGDH) activities after MI. Moreover, in in vitro studies, NBP significantly increased the viability of H9c2 cells in a dose-dependent manner, reduced cell apoptosis, protected mitochondrial functions, elevated the cellular ATP levels, and promoted H2O2-induced mitochondrial biogenesis in H9c2 cardiomyoblasts. Conclusion Collectively, the results from both the in vivo and in vitro experiments suggested that NBP exerted a cardioprotective effect on cardiac ischemic injury via the regulation of mitochondrial function and biogenesis.http://link.springer.com/article/10.1186/s12929-017-0345-9Myocardial infarctionDl-3-n-butylphthalideMitochondrial functionMitochondrial biogenesis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiaochao Tian Weiliang He Rong Yang Yingping Liu |
spellingShingle |
Xiaochao Tian Weiliang He Rong Yang Yingping Liu Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis Journal of Biomedical Science Myocardial infarction Dl-3-n-butylphthalide Mitochondrial function Mitochondrial biogenesis |
author_facet |
Xiaochao Tian Weiliang He Rong Yang Yingping Liu |
author_sort |
Xiaochao Tian |
title |
Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis |
title_short |
Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis |
title_full |
Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis |
title_fullStr |
Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis |
title_full_unstemmed |
Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis |
title_sort |
dl-3-n-butylphthalide protects the heart against ischemic injury and h9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis |
publisher |
BMC |
series |
Journal of Biomedical Science |
issn |
1423-0127 |
publishDate |
2017-06-01 |
description |
Abstract Background Myocardial infarction (MI) is an acute and fatal condition that threatens human health. Dl-3-n-butylphthalide (NBP) has been used for the treatment of acute ischemic stroke. Mitochondria may play a protective role in MI injury. However, there are few reports on the cardioprotective effect of NBP or the potential mitochondrial mechanism for the NBP-induced protection against cardiac ischemia injury. We investigated the therapeutic effects of NBP in an in vivo MI model and an in vitro oxidative stress model, as well as the potential mitochondrial mechanism. Methods This study comprised two different experiments. The aim of experiment 1 was to determine the protective effects of NBP on MI and the underlying mechanisms in vivo. In part 1, myocardial infarct size was measured by staining with 2,3,5-triphenyltetrazoliumchloride (TTC). Myocardial enzymes and mitochondrial enzymes were assayed. The aim of experiment 2 was to investigate the role of NBP in H2O2-induced myocardial ischemic injury in H9c2 cells and to determine the potential mechanism. In part 2, H9c2 cell viability was evaluated. ROS levels, mitochondrial morphology, and mitochondrial membrane potential of H9c2 cells were measured. ATP levels were evaluated using an assay kit; mitochondrial DNA (mtDNA), the expressions of NRF-1 and TFAM, and mitochondrial biogenesis factors were determined. Results NBP treatment significantly reduced the infarct ratio, as observed by TTC staining, decreased serum myocardial enzymes in MI, and restored heart mitochondrial enzymes (isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and a-ketoglutarate dehydrogenase (a-KGDH) activities after MI. Moreover, in in vitro studies, NBP significantly increased the viability of H9c2 cells in a dose-dependent manner, reduced cell apoptosis, protected mitochondrial functions, elevated the cellular ATP levels, and promoted H2O2-induced mitochondrial biogenesis in H9c2 cardiomyoblasts. Conclusion Collectively, the results from both the in vivo and in vitro experiments suggested that NBP exerted a cardioprotective effect on cardiac ischemic injury via the regulation of mitochondrial function and biogenesis. |
topic |
Myocardial infarction Dl-3-n-butylphthalide Mitochondrial function Mitochondrial biogenesis |
url |
http://link.springer.com/article/10.1186/s12929-017-0345-9 |
work_keys_str_mv |
AT xiaochaotian dl3nbutylphthalideprotectstheheartagainstischemicinjuryandh9c2cardiomyoblastsagainstoxidativestressinvolvementofmitochondrialfunctionandbiogenesis AT weilianghe dl3nbutylphthalideprotectstheheartagainstischemicinjuryandh9c2cardiomyoblastsagainstoxidativestressinvolvementofmitochondrialfunctionandbiogenesis AT rongyang dl3nbutylphthalideprotectstheheartagainstischemicinjuryandh9c2cardiomyoblastsagainstoxidativestressinvolvementofmitochondrialfunctionandbiogenesis AT yingpingliu dl3nbutylphthalideprotectstheheartagainstischemicinjuryandh9c2cardiomyoblastsagainstoxidativestressinvolvementofmitochondrialfunctionandbiogenesis |
_version_ |
1725861775770910720 |