Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument

<p>Precise and accurate hydroxyl radical (OH) measurements are essential to investigate mechanisms for oxidation and transformation of trace gases and processes leading to the formation of secondary pollutants like ozone (<span class="inline-formula">O<sub>3</sub>&l...

Full description

Bibliographic Details
Main Authors: C. Cho, A. Hofzumahaus, H. Fuchs, H.-P. Dorn, M. Glowania, F. Holland, F. Rohrer, V. Vardhan, A. Kiendler-Scharr, A. Wahner, A. Novelli
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/1851/2021/amt-14-1851-2021.pdf
id doaj-4a44d65fd5124ecd8402e43c409448c5
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Cho
A. Hofzumahaus
H. Fuchs
H.-P. Dorn
M. Glowania
F. Holland
F. Rohrer
V. Vardhan
A. Kiendler-Scharr
A. Wahner
A. Novelli
spellingShingle C. Cho
A. Hofzumahaus
H. Fuchs
H.-P. Dorn
M. Glowania
F. Holland
F. Rohrer
V. Vardhan
A. Kiendler-Scharr
A. Wahner
A. Novelli
Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
Atmospheric Measurement Techniques
author_facet C. Cho
A. Hofzumahaus
H. Fuchs
H.-P. Dorn
M. Glowania
F. Holland
F. Rohrer
V. Vardhan
A. Kiendler-Scharr
A. Wahner
A. Novelli
author_sort C. Cho
title Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
title_short Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
title_full Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
title_fullStr Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
title_full_unstemmed Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
title_sort characterization of a chemical modulation reactor (cmr) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-03-01
description <p>Precise and accurate hydroxyl radical (OH) measurements are essential to investigate mechanisms for oxidation and transformation of trace gases and processes leading to the formation of secondary pollutants like ozone (<span class="inline-formula">O<sub>3</sub></span>) in the troposphere. Laser-induced fluorescence (LIF) is a widely used technique for the measurement of ambient OH radicals and was used for the majority of field campaigns and chamber experiments. Recently, most LIF instruments in use for atmospheric measurements of OH radicals introduced chemical modulation to separate the ambient OH radical concentration from possible interferences by chemically removing ambient OH radicals before they enter the detection cell (Mao et al., 2012; Novelli et al., 2014a). In this study, we describe the application and characterization of a chemical modulation reactor (CMR) applied to the Forschungszentrum Jülich LIF (FZJ-LIF) instrument in use at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). Besides dedicated experiments in synthetic air, the new technique was extensively tested during the year-round Jülich Atmospheric Chemistry Project (JULIAC) campaign, in which ambient air was continuously flowed into the SAPHIR chamber. It allowed for performing OH measurement comparisons with differential optical absorption spectroscopy (DOAS) and investigation of interferences in a large variety of chemical and meteorological conditions. Good agreement was obtained in the LIF–DOAS intercomparison within instrumental accuracies (18 % for LIF and 6.5 % for DOAS) which confirms that the new chemical modulation system of the FZJ-LIF instrument is suitable for measurement of interference-free OH concentrations under the conditions of the JULIAC campaign (rural environment). Known interferences from <span class="inline-formula">O<sub>3</sub>+H<sub>2</sub>O</span> and the nitrate radical (<span class="inline-formula">NO<sub>3</sub></span>) were quantified with the CMR in synthetic air in the chamber and found to be <span class="inline-formula">3.0×10<sup>5</sup></span> and <span class="inline-formula">0.6×10<sup>5</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>, respectively, for typical ambient-air conditions (<span class="inline-formula">O<sub>3</sub>=50</span> ppbv, <span class="inline-formula">H<sub>2</sub>O</span> = 1<span class="inline-formula"> <i>%</i></span> and <span class="inline-formula">NO<sub>3</sub>=10</span> pptv). The interferences measured in ambient air during the JULIAC campaign in the summer season showed a median diurnal variation with a median maximum value of <span class="inline-formula">0.9×10<sup>6</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> during daytime and a median minimum value of <span class="inline-formula">0.4×10<sup>6</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> at night. The highest interference of <span class="inline-formula">2×10<sup>6</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> occurred in a heat wave from 22 to 29 August, when the air temperature and ozone increased to 40 <span class="inline-formula"><sup>∘</sup></span>C and 100 ppbv, respectively. All observed interferences could be fully explained by the known <span class="inline-formula">O<sub>3</sub>+H<sub>2</sub>O</span> interference, which is routinely corrected in FZJ-LIF measurements when no chemical modulation is applied. No evidence for an unexplained interference was found during the JULIAC campaign.</p> <p>A chemical model of the CMR was developed and applied to estimate the possible perturbation of the OH transmission and scavenging efficiency by reactive atmospheric trace gases. These can remove OH by gas phase reactions in the CMR or produce OH by non-photolytic reactions, most importantly by the reaction of ambient <span class="inline-formula">HO<sub>2</sub></span> with NO. The interfering processes become relevant at high atmospheric OH reactivities. For the conditions of the JULIAC campaign with OH reactivities below 20 s<span class="inline-formula"><sup>−1</sup></span>, the influence on the determination of ambient OH concentrations was small (on average: 2 %). However, in environments with high OH reactivities, such as in a rain forest or megacity, the expected perturbation in the currently used chemical modulation reactor could be large (more than a factor of 2). Such perturbations need to be<span id="page1852"/> carefully investigated and corrected for the proper evaluation of OH concentrations when applying chemical scavenging. This implies that chemical modulation, which was developed to eliminate interferences in ambient OH measurements, itself can be subject to interferences that depend on ambient atmospheric conditions.</p>
url https://amt.copernicus.org/articles/14/1851/2021/amt-14-1851-2021.pdf
work_keys_str_mv AT ccho characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT ahofzumahaus characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT hfuchs characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT hpdorn characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT mglowania characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT fholland characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT frohrer characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT vvardhan characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT akiendlerscharr characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT awahner characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
AT anovelli characterizationofachemicalmodulationreactorcmrforthemeasurementofatmosphericconcentrationsofhydroxylradicalswithalaserinducedfluorescenceinstrument
_version_ 1724230428521398272
spelling doaj-4a44d65fd5124ecd8402e43c409448c52021-03-05T16:02:09ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-03-01141851187710.5194/amt-14-1851-2021Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrumentC. ChoA. HofzumahausH. FuchsH.-P. DornM. GlowaniaF. HollandF. RohrerV. VardhanA. Kiendler-ScharrA. WahnerA. Novelli<p>Precise and accurate hydroxyl radical (OH) measurements are essential to investigate mechanisms for oxidation and transformation of trace gases and processes leading to the formation of secondary pollutants like ozone (<span class="inline-formula">O<sub>3</sub></span>) in the troposphere. Laser-induced fluorescence (LIF) is a widely used technique for the measurement of ambient OH radicals and was used for the majority of field campaigns and chamber experiments. Recently, most LIF instruments in use for atmospheric measurements of OH radicals introduced chemical modulation to separate the ambient OH radical concentration from possible interferences by chemically removing ambient OH radicals before they enter the detection cell (Mao et al., 2012; Novelli et al., 2014a). In this study, we describe the application and characterization of a chemical modulation reactor (CMR) applied to the Forschungszentrum Jülich LIF (FZJ-LIF) instrument in use at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). Besides dedicated experiments in synthetic air, the new technique was extensively tested during the year-round Jülich Atmospheric Chemistry Project (JULIAC) campaign, in which ambient air was continuously flowed into the SAPHIR chamber. It allowed for performing OH measurement comparisons with differential optical absorption spectroscopy (DOAS) and investigation of interferences in a large variety of chemical and meteorological conditions. Good agreement was obtained in the LIF–DOAS intercomparison within instrumental accuracies (18 % for LIF and 6.5 % for DOAS) which confirms that the new chemical modulation system of the FZJ-LIF instrument is suitable for measurement of interference-free OH concentrations under the conditions of the JULIAC campaign (rural environment). Known interferences from <span class="inline-formula">O<sub>3</sub>+H<sub>2</sub>O</span> and the nitrate radical (<span class="inline-formula">NO<sub>3</sub></span>) were quantified with the CMR in synthetic air in the chamber and found to be <span class="inline-formula">3.0×10<sup>5</sup></span> and <span class="inline-formula">0.6×10<sup>5</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>, respectively, for typical ambient-air conditions (<span class="inline-formula">O<sub>3</sub>=50</span> ppbv, <span class="inline-formula">H<sub>2</sub>O</span> = 1<span class="inline-formula"> <i>%</i></span> and <span class="inline-formula">NO<sub>3</sub>=10</span> pptv). The interferences measured in ambient air during the JULIAC campaign in the summer season showed a median diurnal variation with a median maximum value of <span class="inline-formula">0.9×10<sup>6</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> during daytime and a median minimum value of <span class="inline-formula">0.4×10<sup>6</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> at night. The highest interference of <span class="inline-formula">2×10<sup>6</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> occurred in a heat wave from 22 to 29 August, when the air temperature and ozone increased to 40 <span class="inline-formula"><sup>∘</sup></span>C and 100 ppbv, respectively. All observed interferences could be fully explained by the known <span class="inline-formula">O<sub>3</sub>+H<sub>2</sub>O</span> interference, which is routinely corrected in FZJ-LIF measurements when no chemical modulation is applied. No evidence for an unexplained interference was found during the JULIAC campaign.</p> <p>A chemical model of the CMR was developed and applied to estimate the possible perturbation of the OH transmission and scavenging efficiency by reactive atmospheric trace gases. These can remove OH by gas phase reactions in the CMR or produce OH by non-photolytic reactions, most importantly by the reaction of ambient <span class="inline-formula">HO<sub>2</sub></span> with NO. The interfering processes become relevant at high atmospheric OH reactivities. For the conditions of the JULIAC campaign with OH reactivities below 20 s<span class="inline-formula"><sup>−1</sup></span>, the influence on the determination of ambient OH concentrations was small (on average: 2 %). However, in environments with high OH reactivities, such as in a rain forest or megacity, the expected perturbation in the currently used chemical modulation reactor could be large (more than a factor of 2). Such perturbations need to be<span id="page1852"/> carefully investigated and corrected for the proper evaluation of OH concentrations when applying chemical scavenging. This implies that chemical modulation, which was developed to eliminate interferences in ambient OH measurements, itself can be subject to interferences that depend on ambient atmospheric conditions.</p>https://amt.copernicus.org/articles/14/1851/2021/amt-14-1851-2021.pdf