Summary: | The present study was conducted to evaluate the impact of monometallic and bimetallic nanoparticles (NPs) of copper (Cu) and silver (Ag) from Justicia spicigera on the photochemical efficiency and phenol pattern of Prosopis glandulosa. In this study, the existence of localized surface plasmon resonance absorption associated with the nano-sized nature of Ag, Cu and Cu/Ag particles was confirmed by the presence of a single peak around 487, 585, and 487/580 nm respectively. Zeta potential and electrophoretic mobility were found to be 0.2 mV and 0.02 μmcm/(Vs) for synthesized NPs indicating less stability and thus tendency to agglomerate, and broad distribution of particles. Cu-NPs and Cu/Ag-NPs demonstrate that the dispersed phase is stable and has a minimum particle size at zeta potentials above –30 mV. Changes in phenolic compounds, total chlorophyll, and photochemical efficiency in leaves exposed to Ag, Cu and Cu/Ag phyto-nanoparticles were evaluated up to 72 hours. The results revealed that Ag-NP and Cu-NP from J. spicigera at 100 mg/L showed significant reduction in chlorophyll, epidermal polyphenol content and photochemical efficiency of P. glandulosa. In contrast, the application of bimetallic Cu/Ag-NP from J. spicigera showed a positive impact on physiological parameters of P. glandulosa after 72 h of exposure.
|