Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study

The building sector is responsible for a substantial part of the energy consumption and corresponding CO<sub>2</sub> emissions. The European Union has consequently developed various directives, among which the updated Energy Performance of Buildings Directive 2018/844/EU stands out, aimi...

Full description

Bibliographic Details
Main Authors: Javier M. Rey-Hernández, Eloy Velasco-Gómez, Julio F. San José-Alonso, Ana Tejero-González, Sergio L. González-González, Francisco J. Rey-Martínez
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/11/11/2979
Description
Summary:The building sector is responsible for a substantial part of the energy consumption and corresponding CO<sub>2</sub> emissions. The European Union has consequently developed various directives, among which the updated Energy Performance of Buildings Directive 2018/844/EU stands out, aiming at minimizing the energy demand in buildings, improving the energy efficiency of their facilities and integrating renewable energies. The objective of the present study was to develop an analysis on the energy performance, related CO<sub>2</sub> emissions and operating costs of the renewable energy technologies implemented within a multipurpose near Zero Energy Building (nZEB). The target building is an existing nZEB called LUCIA, located in Valladolid (Spain). Monitoring data provides the required information on the actual needs for electricity, cooling and heating. It is equipped with solar energy photovoltaic systems, a biomass boiler and a geothermal Earth to Air Heat Exchanger (EAHX) intended for meeting the ventilation thermal loads. All systems studied show favourable performances, but depend significantly on the particular characteristics of the building, the control algorithm and the climate of the location. Hence, design of these strategies for new nZEBs must consider all these factors. The combined use of the PhotoVoltaic PV System, the biomass and the EAHX reduces the CO<sub>2</sub> emissions up to 123 to 170 tons/year in comparison with other fuels, entailing economic savings from the system operation of up to 43,000&#8315;50,000 &#8364;/year.
ISSN:1996-1073