Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems

We investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions convergin...

Full description

Bibliographic Details
Main Authors: Vincenzo Ambrosio, Alessio Fiscella, Teresa Isernia
Format: Article
Language:English
Published: University of Szeged 2019-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7091
id doaj-4a3518801ac94a78bb618b533d2c4865
record_format Article
spelling doaj-4a3518801ac94a78bb618b533d2c48652021-07-14T07:21:32ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752019-04-0120192511310.14232/ejqtde.2019.1.257091Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problemsVincenzo Ambrosio0Alessio Fiscella1Teresa Isernia2Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Ancona, ItalyUniversidade Estadual de Campinas, Campinas, BrazilDipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Ancona, ItalyWe investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7091fractional $p$-laplaciankirchhoff coefficienthardy potentialscritical sobolev exponentvariational methods
collection DOAJ
language English
format Article
sources DOAJ
author Vincenzo Ambrosio
Alessio Fiscella
Teresa Isernia
spellingShingle Vincenzo Ambrosio
Alessio Fiscella
Teresa Isernia
Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
Electronic Journal of Qualitative Theory of Differential Equations
fractional $p$-laplacian
kirchhoff coefficient
hardy potentials
critical sobolev exponent
variational methods
author_facet Vincenzo Ambrosio
Alessio Fiscella
Teresa Isernia
author_sort Vincenzo Ambrosio
title Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
title_short Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
title_full Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
title_fullStr Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
title_full_unstemmed Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
title_sort infinitely many solutions for fractional kirchhoff–sobolev–hardy critical problems
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2019-04-01
description We investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.
topic fractional $p$-laplacian
kirchhoff coefficient
hardy potentials
critical sobolev exponent
variational methods
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7091
work_keys_str_mv AT vincenzoambrosio infinitelymanysolutionsforfractionalkirchhoffsobolevhardycriticalproblems
AT alessiofiscella infinitelymanysolutionsforfractionalkirchhoffsobolevhardycriticalproblems
AT teresaisernia infinitelymanysolutionsforfractionalkirchhoffsobolevhardycriticalproblems
_version_ 1721303459005726720