Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry
On 30 August 2009, intense forest fires in interior British Columbia (BC) coupled with winds from the east and northeast resulted in transport of a broad forest fire plume across southwestern BC. The physico-chemical and optical characteristics of the plume as observed from Saturna Island (AERONET),...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2010-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/10/11921/2010/acp-10-11921-2010.pdf |
id |
doaj-49b62acbf08e47178d22353227eaf6bc |
---|---|
record_format |
Article |
spelling |
doaj-49b62acbf08e47178d22353227eaf6bc2020-11-24T23:31:25ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242010-12-011023119211193010.5194/acp-10-11921-2010Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistryI. G. McKendry0J. Gallagher1P. Campuzano Jost2A. Bertram3K. Strawbridge4R. Leaitch5A. M. Macdonald6Department of Geography, The University of British Columbia, Vancouver, CanadaDepartment of Geography, The University of British Columbia, Vancouver, CanadaDepartment of Chemistry, The University of British Columbia, Vancouver, CanadaDepartment of Chemistry, The University of British Columbia, Vancouver, CanadaCentre for Atmospheric Research Experiments, Environment Canada, Egbert, CanadaScience and Technology Branch, Environment Canada, Toronto, CanadaScience and Technology Branch, Environment Canada, Toronto, CanadaOn 30 August 2009, intense forest fires in interior British Columbia (BC) coupled with winds from the east and northeast resulted in transport of a broad forest fire plume across southwestern BC. The physico-chemical and optical characteristics of the plume as observed from Saturna Island (AERONET), CORALNet-UBC and the Whistler Mountain air chemistry facility were consistent with forest fire plumes that have been observed elsewhere in continental North America. However, the importance of three-dimensional transport in relation to the interpretation of mountaintop chemistry observations is highlighted on the basis of deployment of both a <i>CL31</i> ceilometer and a single particle mass spectrometer (SPMS) in a mountainous setting. The SPMS is used to identify the biomass plume based on levoglucosan and potassium markers. Data from the SPMS are also used to show that the biomass plume was correlated with nitrate, but not correlated with sulphate or sodium. This study not only provides baseline measurements of biomass burning plume physico-chemical characteristics in western Canada, but also highlights the importance of lidar remote sensing methods in the interpretation of mountaintop chemistry measurements.http://www.atmos-chem-phys.net/10/11921/2010/acp-10-11921-2010.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
I. G. McKendry J. Gallagher P. Campuzano Jost A. Bertram K. Strawbridge R. Leaitch A. M. Macdonald |
spellingShingle |
I. G. McKendry J. Gallagher P. Campuzano Jost A. Bertram K. Strawbridge R. Leaitch A. M. Macdonald Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry Atmospheric Chemistry and Physics |
author_facet |
I. G. McKendry J. Gallagher P. Campuzano Jost A. Bertram K. Strawbridge R. Leaitch A. M. Macdonald |
author_sort |
I. G. McKendry |
title |
Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry |
title_short |
Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry |
title_full |
Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry |
title_fullStr |
Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry |
title_full_unstemmed |
Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry |
title_sort |
ground-based remote sensing of an elevated forest fire aerosol layer at whistler, bc: implications for interpretation of mountaintop chemistry |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2010-12-01 |
description |
On 30 August 2009, intense forest fires in interior British Columbia (BC)
coupled with winds from the east and northeast resulted in transport of a
broad forest fire plume across southwestern BC. The physico-chemical and
optical characteristics of the plume as observed from Saturna Island
(AERONET), CORALNet-UBC and the Whistler Mountain air chemistry facility
were consistent with forest fire plumes that have been observed elsewhere in
continental North America. However, the importance of three-dimensional
transport in relation to the interpretation of mountaintop chemistry
observations is highlighted on the basis of deployment of both a <i>CL31</i> ceilometer
and a single particle mass spectrometer (SPMS) in a mountainous setting. The
SPMS is used to identify the biomass plume based on levoglucosan and
potassium markers. Data from the SPMS are also used to show that the
biomass plume was correlated with nitrate, but not correlated with sulphate
or sodium. This study not only provides baseline measurements of biomass
burning plume physico-chemical characteristics in western Canada, but also
highlights the importance of lidar remote sensing methods in the
interpretation of mountaintop chemistry measurements. |
url |
http://www.atmos-chem-phys.net/10/11921/2010/acp-10-11921-2010.pdf |
work_keys_str_mv |
AT igmckendry groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry AT jgallagher groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry AT pcampuzanojost groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry AT abertram groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry AT kstrawbridge groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry AT rleaitch groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry AT ammacdonald groundbasedremotesensingofanelevatedforestfireaerosollayeratwhistlerbcimplicationsforinterpretationofmountaintopchemistry |
_version_ |
1725538118011977728 |