Exercise-induced changes in skin temperature and blood parameters in horses
<p>The aim of the study was to assess the effects of training on haematological and biochemical blood parameters as well as on the changes in body surface temperature in horses. In order to identify the predictive value of surface temperature measurements as a marker of animal's performan...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-04-01
|
Series: | Archives Animal Breeding |
Online Access: | https://www.arch-anim-breed.net/62/205/2019/aab-62-205-2019.pdf |
Summary: | <p>The aim of the study was to assess the effects of
training on haematological and biochemical blood parameters as well as on
the changes in body surface temperature in horses. In order to identify the
predictive value of surface temperature measurements as a marker of animal's
performance, their correlations with blood parameters were investigated. The
study was carried out on nine horses divided into two groups: routinely ridden
and never ridden. Infrared thermography was used to assess surface
temperature changes before (BT) and just after training (JAT) on a
treadmill. Seven regions of interest (ROIs) located on the neck, shoulder,
elbow, back, chest, gluteus and quarter were analysed. The blood samples
were taken BT, JAT and 30 min after training (30AT). Haematological
parameters including white blood cells, lymphocytes (LYMs), monocytes (MONOs),
granulocytes (GRAs), eosinophils (EOSs), haematocrit (HCT) and platelets (PLTs)
as well as biochemical parameters such as glucose (GLUC), urea,
<span class="inline-formula">Na<sup>+</sup></span>, <span class="inline-formula">K<sup>+</sup></span> and <span class="inline-formula">Ca<sup>2+</sup></span>, and creatine phosphokinase (CPK) were
analysed. Our results indicated a significant increase in surface
temperature JAT (<span class="inline-formula"><i>p</i>=0.043</span>) in the neck, shoulder, elbow, gluteus and
quarter in routinely ridden horses. Significant changes in EOS (<span class="inline-formula"><i>p</i>=0.046</span>)
and HCT (<span class="inline-formula"><i>p</i>=0.043</span>) in the case of the never-ridden and routinely ridden group,
respectively, were found between the times of blood collection. In addition,
there was a significant effect of the horse group and the time of blood
collection on the CPK activity (<span class="inline-formula"><i>p</i>=0.025</span> to <span class="inline-formula"><i>p</i>=0.045</span>) and urea
concentrations (<span class="inline-formula"><i>p</i>=0.027</span> to <span class="inline-formula"><i>p</i>=0.045</span>). In the routinely ridden horses,
there were significant correlations between the changes in MONO
(<span class="inline-formula"><i>ρ</i>=0.40</span>), GRA (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">ρ</mi><mo>=</mo><mo>-</mo><mn mathvariant="normal">0.40</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="5979da5bf58744537ddb7f40bba6f626"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-62-205-2019-ie00001.svg" width="51pt" height="12pt" src="aab-62-205-2019-ie00001.png"/></svg:svg></span></span>), PLT (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">ρ</mi><mo>=</mo><mo>-</mo><mn mathvariant="normal">0.77</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="c2837ee732663bfdaedfefb058258b4d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-62-205-2019-ie00002.svg" width="51pt" height="12pt" src="aab-62-205-2019-ie00002.png"/></svg:svg></span></span>), HCT (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">ρ</mi><mo>=</mo><mo>-</mo><mn mathvariant="normal">0.36</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="274bf6dbc215a60d5425efb007367db6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-62-205-2019-ie00003.svg" width="51pt" height="12pt" src="aab-62-205-2019-ie00003.png"/></svg:svg></span></span>), GLUC
(<span class="inline-formula"><i>ρ</i>=0.56</span>) and urea (<span class="inline-formula"><i>ρ</i>=0.56</span>) and the total ROI temperature changes.
Moreover, significant correlations between the changes in MONO
(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">ρ</mi><mo>=</mo><mo>-</mo><mn mathvariant="normal">0.86</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="343748907710a9ac9de34c85111cec5a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-62-205-2019-ie00004.svg" width="54pt" height="12pt" src="aab-62-205-2019-ie00004.png"/></svg:svg></span></span>, EOS (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">ρ</mi><mo>=</mo><mo>-</mo><mn mathvariant="normal">0.65</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="2a840b7434126680271dc3fec781fb72"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-62-205-2019-ie00005.svg" width="51pt" height="12pt" src="aab-62-205-2019-ie00005.png"/></svg:svg></span></span>), GLUC (<span class="inline-formula"><i>ρ</i>=0.85</span>), urea (<span class="inline-formula"><i>ρ</i>=0.85</span>),
<span class="inline-formula">Na<sup>+</sup></span> (<span class="inline-formula"><i>ρ</i>=0.59</span>) and <span class="inline-formula">K<sup>+</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">ρ</mi><mo>=</mo><mo>-</mo><mn mathvariant="normal">0.85</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="ba509f6177566a93ae56ab36f40d4d27"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-62-205-2019-ie00006.svg" width="51pt" height="12pt" src="aab-62-205-2019-ie00006.png"/></svg:svg></span></span>) and the total ROI
temperature changes were found in never-ridden horses. Different changes in
body surface temperature and blood parameters in routinely ridden and
never-ridden horses could be associated with different conditioning and
performance. A significantly higher surface temperature in routinely ridden
horses, as well as the dynamics of changes in HCT, CPK and urea after
training indicate better performance of these horses. Significant
correlations between MONO, GLUC, and urea and a total ROI surface temperature
as well as a negative correlation between MONO and the total ROI temperature
in never-ridden horses indicated poor performance.</p> |
---|---|
ISSN: | 0003-9438 2363-9822 |