CNN-BASED FEATURE-LEVEL FUSION OF VERY HIGH RESOLUTION AERIAL IMAGERY AND LIDAR DATA

Land-cover classification of Remote Sensing (RS) data in urban area has always been a challenging task due to the complicated relations between different objects. Recently, fusion of aerial imagery and light detection and ranging (LiDAR) data has obtained a great attention in RS communities. Meanwhi...

Full description

Bibliographic Details
Main Authors: S. Daneshtalab, H. Rastiveis, B. Hosseiny
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W18/279/2019/isprs-archives-XLII-4-W18-279-2019.pdf
Description
Summary:Land-cover classification of Remote Sensing (RS) data in urban area has always been a challenging task due to the complicated relations between different objects. Recently, fusion of aerial imagery and light detection and ranging (LiDAR) data has obtained a great attention in RS communities. Meanwhile, convolutional neural network (CNN) has proven its power in extracting high-level (deep) descriptors to improve RS data classification. In this paper, a CNN-based feature-level framework is proposed to integrate LiDAR data and aerial imagery for object classification in urban area. In our method, after generating low-level descriptors and fusing them in a feature-level fusion by layer-stacking, the proposed framework employs a novel CNN to extract the spectral-spatial features for classification process, which is performed using a fully connected multilayer perceptron network (MLP). The experimental results revealed that the proposed deep fusion model provides about 10% improvement in overall accuracy (OA) in comparison with other conventional feature-level fusion techniques.
ISSN:1682-1750
2194-9034