Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectro...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Beilstein-Institut
2018-03-01
|
Series: | Beilstein Journal of Nanotechnology |
Subjects: | |
Online Access: | https://doi.org/10.3762/bjnano.9.86 |
id |
doaj-4946fc0b879d4e82b4902ebb9ae9e600 |
---|---|
record_format |
Article |
spelling |
doaj-4946fc0b879d4e82b4902ebb9ae9e6002020-11-25T00:30:44ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862018-03-019193694410.3762/bjnano.9.862190-4286-9-86Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layerAbdulrahman Altin0Maciej Krzywiecki1Adnan Sarfraz2Cigdem Toparli3Claudius Laska4Philipp Kerger5Aleksandar Zeradjanin6Karl J. J. Mayrhofer7Michael Rohwerder8Andreas Erbe9Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyCorrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of β-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact β-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the β-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals.https://doi.org/10.3762/bjnano.9.86band diagramdefect chemistryorganic corrosion inhibitorsX-ray photoelectron spectroscopyzinc corrosion |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdulrahman Altin Maciej Krzywiecki Adnan Sarfraz Cigdem Toparli Claudius Laska Philipp Kerger Aleksandar Zeradjanin Karl J. J. Mayrhofer Michael Rohwerder Andreas Erbe |
spellingShingle |
Abdulrahman Altin Maciej Krzywiecki Adnan Sarfraz Cigdem Toparli Claudius Laska Philipp Kerger Aleksandar Zeradjanin Karl J. J. Mayrhofer Michael Rohwerder Andreas Erbe Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer Beilstein Journal of Nanotechnology band diagram defect chemistry organic corrosion inhibitors X-ray photoelectron spectroscopy zinc corrosion |
author_facet |
Abdulrahman Altin Maciej Krzywiecki Adnan Sarfraz Cigdem Toparli Claudius Laska Philipp Kerger Aleksandar Zeradjanin Karl J. J. Mayrhofer Michael Rohwerder Andreas Erbe |
author_sort |
Abdulrahman Altin |
title |
Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer |
title_short |
Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer |
title_full |
Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer |
title_fullStr |
Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer |
title_full_unstemmed |
Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer |
title_sort |
cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer |
publisher |
Beilstein-Institut |
series |
Beilstein Journal of Nanotechnology |
issn |
2190-4286 |
publishDate |
2018-03-01 |
description |
Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of β-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact β-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the β-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals. |
topic |
band diagram defect chemistry organic corrosion inhibitors X-ray photoelectron spectroscopy zinc corrosion |
url |
https://doi.org/10.3762/bjnano.9.86 |
work_keys_str_mv |
AT abdulrahmanaltin cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT maciejkrzywiecki cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT adnansarfraz cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT cigdemtoparli cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT claudiuslaska cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT philippkerger cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT aleksandarzeradjanin cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT karljjmayrhofer cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT michaelrohwerder cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer AT andreaserbe cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer |
_version_ |
1725325374422777856 |