Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectro...

Full description

Bibliographic Details
Main Authors: Abdulrahman Altin, Maciej Krzywiecki, Adnan Sarfraz, Cigdem Toparli, Claudius Laska, Philipp Kerger, Aleksandar Zeradjanin, Karl J. J. Mayrhofer, Michael Rohwerder, Andreas Erbe
Format: Article
Language:English
Published: Beilstein-Institut 2018-03-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.9.86
id doaj-4946fc0b879d4e82b4902ebb9ae9e600
record_format Article
spelling doaj-4946fc0b879d4e82b4902ebb9ae9e6002020-11-25T00:30:44ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862018-03-019193694410.3762/bjnano.9.862190-4286-9-86Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layerAbdulrahman Altin0Maciej Krzywiecki1Adnan Sarfraz2Cigdem Toparli3Claudius Laska4Philipp Kerger5Aleksandar Zeradjanin6Karl J. J. Mayrhofer7Michael Rohwerder8Andreas Erbe9Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyMax-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, GermanyCorrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of β-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact β-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the β-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals.https://doi.org/10.3762/bjnano.9.86band diagramdefect chemistryorganic corrosion inhibitorsX-ray photoelectron spectroscopyzinc corrosion
collection DOAJ
language English
format Article
sources DOAJ
author Abdulrahman Altin
Maciej Krzywiecki
Adnan Sarfraz
Cigdem Toparli
Claudius Laska
Philipp Kerger
Aleksandar Zeradjanin
Karl J. J. Mayrhofer
Michael Rohwerder
Andreas Erbe
spellingShingle Abdulrahman Altin
Maciej Krzywiecki
Adnan Sarfraz
Cigdem Toparli
Claudius Laska
Philipp Kerger
Aleksandar Zeradjanin
Karl J. J. Mayrhofer
Michael Rohwerder
Andreas Erbe
Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
Beilstein Journal of Nanotechnology
band diagram
defect chemistry
organic corrosion inhibitors
X-ray photoelectron spectroscopy
zinc corrosion
author_facet Abdulrahman Altin
Maciej Krzywiecki
Adnan Sarfraz
Cigdem Toparli
Claudius Laska
Philipp Kerger
Aleksandar Zeradjanin
Karl J. J. Mayrhofer
Michael Rohwerder
Andreas Erbe
author_sort Abdulrahman Altin
title Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
title_short Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
title_full Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
title_fullStr Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
title_full_unstemmed Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
title_sort cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2018-03-01
description Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of β-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact β-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the β-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals.
topic band diagram
defect chemistry
organic corrosion inhibitors
X-ray photoelectron spectroscopy
zinc corrosion
url https://doi.org/10.3762/bjnano.9.86
work_keys_str_mv AT abdulrahmanaltin cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT maciejkrzywiecki cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT adnansarfraz cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT cigdemtoparli cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT claudiuslaska cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT philippkerger cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT aleksandarzeradjanin cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT karljjmayrhofer cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT michaelrohwerder cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
AT andreaserbe cyclodextrininhibitszinccorrosionbydestabilizingpointdefectformationintheoxidelayer
_version_ 1725325374422777856