Human-specific gene CHRFAM7A mediates M2 macrophage polarization via the Notch pathway to ameliorate hypertrophic scar formation

Hypertrophic scars often cause great pain to patients. It is generally believed that anti-inflammatory scar therapies are the best strategies for treatment because excessive inflammation is observed in hypertrophic scar tissue. However, the results of such treatment are unsatisfactory. In recent stu...

Full description

Bibliographic Details
Main Authors: Tianya Li, Wei Chen, Qun Zhang, Chenliang Deng
Format: Article
Language:English
Published: Elsevier 2020-11-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332220308040
Description
Summary:Hypertrophic scars often cause great pain to patients. It is generally believed that anti-inflammatory scar therapies are the best strategies for treatment because excessive inflammation is observed in hypertrophic scar tissue. However, the results of such treatment are unsatisfactory. In recent studies, immune stimulatory therapies have been suggested to be a preferable method for ameliorating hypertrophic scars. In this study, the expression of the human-specific gene CHRFAM7A, which has been reported to be a promoter of inflammation, was found to be lower in human hypertrophic scars than in normotrophic scars. The CHRFAM7A gene was overexpressed in a hypertrophic scar mouse model using a lentivirus system. Scar fibrosis decreased in the CHRFAM7A transfection group compared to the control group, and the proportion of M2 macrophages decreased at 4 and 8 weeks after establishing the model. We also found that CHRFAM7A increased the activation of the Notch pathway, which eventually attenuated M2 polarization. In the CHRFAM7A-transfected hypertrophic scar mouse group, the number of M1 macrophages increased dramatically in the initial period. Moreover, the expression of the inflammatory gene TNFα was also increased in transfected mice. Our results demonstrate that CHRFAM7A can effectively ameliorate hypertrophic scar formation via regulation of macrophage phenotypic transition. CHRFAM7A might be a therapeutic target for hypertrophic scars.
ISSN:0753-3322