The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement

The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation wi...

Full description

Bibliographic Details
Main Authors: Lucy Vojtova, Lenka Michlovska, Kristyna Valova, Marek Zboncak, Martin Trunec, Klara Castkova, Milan Krticka, Veronika Pavlinakova, Petr Polacek, Matej Dzurov, Vera Lukasova, Michala Rampichova, Tomas Suchy, Radek Sedlacek, Maria-Pau Ginebra, Edgar B. Montufar
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/20/2/391
id doaj-48d7bfb58db647108e589302c48f6cb0
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Lucy Vojtova
Lenka Michlovska
Kristyna Valova
Marek Zboncak
Martin Trunec
Klara Castkova
Milan Krticka
Veronika Pavlinakova
Petr Polacek
Matej Dzurov
Vera Lukasova
Michala Rampichova
Tomas Suchy
Radek Sedlacek
Maria-Pau Ginebra
Edgar B. Montufar
spellingShingle Lucy Vojtova
Lenka Michlovska
Kristyna Valova
Marek Zboncak
Martin Trunec
Klara Castkova
Milan Krticka
Veronika Pavlinakova
Petr Polacek
Matej Dzurov
Vera Lukasova
Michala Rampichova
Tomas Suchy
Radek Sedlacek
Maria-Pau Ginebra
Edgar B. Montufar
The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
International Journal of Molecular Sciences
injectable bone cements
thixotropic
rheology
morphology
kinetics
biocompatibility
author_facet Lucy Vojtova
Lenka Michlovska
Kristyna Valova
Marek Zboncak
Martin Trunec
Klara Castkova
Milan Krticka
Veronika Pavlinakova
Petr Polacek
Matej Dzurov
Vera Lukasova
Michala Rampichova
Tomas Suchy
Radek Sedlacek
Maria-Pau Ginebra
Edgar B. Montufar
author_sort Lucy Vojtova
title The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
title_short The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
title_full The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
title_fullStr The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
title_full_unstemmed The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
title_sort effect of the thermosensitive biodegradable plga–peg–plga copolymer on the rheological, structural and mechanical properties of thixotropic self-hardening tricalcium phosphate cement
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1422-0067
publishDate 2019-01-01
description The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA–PEG–PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA–PEG–PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
topic injectable bone cements
thixotropic
rheology
morphology
kinetics
biocompatibility
url http://www.mdpi.com/1422-0067/20/2/391
work_keys_str_mv AT lucyvojtova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT lenkamichlovska theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT kristynavalova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT marekzboncak theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT martintrunec theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT klaracastkova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT milankrticka theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT veronikapavlinakova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT petrpolacek theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT matejdzurov theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT veralukasova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT michalarampichova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT tomassuchy theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT radeksedlacek theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT mariapauginebra theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT edgarbmontufar theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT lucyvojtova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT lenkamichlovska effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT kristynavalova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT marekzboncak effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT martintrunec effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT klaracastkova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT milankrticka effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT veronikapavlinakova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT petrpolacek effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT matejdzurov effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT veralukasova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT michalarampichova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT tomassuchy effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT radeksedlacek effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT mariapauginebra effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
AT edgarbmontufar effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement
_version_ 1725598148302209024
spelling doaj-48d7bfb58db647108e589302c48f6cb02020-11-24T23:13:30ZengMDPI AGInternational Journal of Molecular Sciences1422-00672019-01-0120239110.3390/ijms20020391ijms20020391The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate CementLucy Vojtova0Lenka Michlovska1Kristyna Valova2Marek Zboncak3Martin Trunec4Klara Castkova5Milan Krticka6Veronika Pavlinakova7Petr Polacek8Matej Dzurov9Vera Lukasova10Michala Rampichova11Tomas Suchy12Radek Sedlacek13Maria-Pau Ginebra14Edgar B. Montufar15CEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicTrauma Surgery Department, The University Hospital Brno, Jihlavska 340/20, 325 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicLab of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14240 Prague, Czech RepublicLab of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14240 Prague, Czech RepublicDepartment of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holesovickach 41, 182 09 Prague, Czech RepublicDepartment of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech RepublicBiomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, SpainCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicThe current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA–PEG–PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA–PEG–PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.http://www.mdpi.com/1422-0067/20/2/391injectable bone cementsthixotropicrheologymorphologykineticsbiocompatibility