The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation wi...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-01-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/1422-0067/20/2/391 |
id |
doaj-48d7bfb58db647108e589302c48f6cb0 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lucy Vojtova Lenka Michlovska Kristyna Valova Marek Zboncak Martin Trunec Klara Castkova Milan Krticka Veronika Pavlinakova Petr Polacek Matej Dzurov Vera Lukasova Michala Rampichova Tomas Suchy Radek Sedlacek Maria-Pau Ginebra Edgar B. Montufar |
spellingShingle |
Lucy Vojtova Lenka Michlovska Kristyna Valova Marek Zboncak Martin Trunec Klara Castkova Milan Krticka Veronika Pavlinakova Petr Polacek Matej Dzurov Vera Lukasova Michala Rampichova Tomas Suchy Radek Sedlacek Maria-Pau Ginebra Edgar B. Montufar The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement International Journal of Molecular Sciences injectable bone cements thixotropic rheology morphology kinetics biocompatibility |
author_facet |
Lucy Vojtova Lenka Michlovska Kristyna Valova Marek Zboncak Martin Trunec Klara Castkova Milan Krticka Veronika Pavlinakova Petr Polacek Matej Dzurov Vera Lukasova Michala Rampichova Tomas Suchy Radek Sedlacek Maria-Pau Ginebra Edgar B. Montufar |
author_sort |
Lucy Vojtova |
title |
The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement |
title_short |
The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement |
title_full |
The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement |
title_fullStr |
The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement |
title_full_unstemmed |
The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement |
title_sort |
effect of the thermosensitive biodegradable plga–peg–plga copolymer on the rheological, structural and mechanical properties of thixotropic self-hardening tricalcium phosphate cement |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2019-01-01 |
description |
The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA–PEG–PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA–PEG–PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery. |
topic |
injectable bone cements thixotropic rheology morphology kinetics biocompatibility |
url |
http://www.mdpi.com/1422-0067/20/2/391 |
work_keys_str_mv |
AT lucyvojtova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT lenkamichlovska theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT kristynavalova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT marekzboncak theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT martintrunec theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT klaracastkova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT milankrticka theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT veronikapavlinakova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT petrpolacek theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT matejdzurov theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT veralukasova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT michalarampichova theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT tomassuchy theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT radeksedlacek theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT mariapauginebra theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT edgarbmontufar theeffectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT lucyvojtova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT lenkamichlovska effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT kristynavalova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT marekzboncak effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT martintrunec effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT klaracastkova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT milankrticka effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT veronikapavlinakova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT petrpolacek effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT matejdzurov effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT veralukasova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT michalarampichova effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT tomassuchy effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT radeksedlacek effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT mariapauginebra effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement AT edgarbmontufar effectofthethermosensitivebiodegradableplgapegplgacopolymerontherheologicalstructuralandmechanicalpropertiesofthixotropicselfhardeningtricalciumphosphatecement |
_version_ |
1725598148302209024 |
spelling |
doaj-48d7bfb58db647108e589302c48f6cb02020-11-24T23:13:30ZengMDPI AGInternational Journal of Molecular Sciences1422-00672019-01-0120239110.3390/ijms20020391ijms20020391The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate CementLucy Vojtova0Lenka Michlovska1Kristyna Valova2Marek Zboncak3Martin Trunec4Klara Castkova5Milan Krticka6Veronika Pavlinakova7Petr Polacek8Matej Dzurov9Vera Lukasova10Michala Rampichova11Tomas Suchy12Radek Sedlacek13Maria-Pau Ginebra14Edgar B. Montufar15CEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicTrauma Surgery Department, The University Hospital Brno, Jihlavska 340/20, 325 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicLab of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14240 Prague, Czech RepublicLab of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14240 Prague, Czech RepublicDepartment of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holesovickach 41, 182 09 Prague, Czech RepublicDepartment of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech RepublicBiomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, SpainCEITEC – Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech RepublicThe current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA–PEG–PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA–PEG–PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.http://www.mdpi.com/1422-0067/20/2/391injectable bone cementsthixotropicrheologymorphologykineticsbiocompatibility |