Summary: | A comprehensive systems approach is essential for effective decision making with regard to global sustainability, since industrial, social, and ecological systems are closely linked. Despite efforts to reduce unsustainability, global resource consumption continues to grow. There is an urgent need for a better understanding of the dynamic, adaptive behavior of complex systems and their resilience in the face of disruptions, recognizing that steady-state sustainability models are simplistic. However, assessing the broad impacts of policy and technology choices is a formidable challenge, as exemplified in life-cycle analysis of the implications of alternative energy and mobility technologies. A number of research groups are using dynamic modeling techniques, including biocomplexity, system dynamics, and thermodynamic analysis, to investigate the impacts on ecological and human systems of major shifts such as climate change and the associated policy and technology responses. These techniques can yield at least a partial understanding of dynamic system behavior, enabling a more integrated approach to systems analysis, beneficial intervention, and improvement of resilience. Recommendations are provided for continued research to achieve progress in the dynamic modeling and sustainable management of complex systems.
|